Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы
17. Однополупериодный выпрямитель (16, в) работает через такт. Два таких выпрямителя, соединенных особым образом, дают двухполупериодную схему (17, а), которая использует оба полупериода переменного напряжения. Чтобы вентили двухполупериодной схемы работали поочередно, к ним нужно подвести два противофазных напряжения U1 и U2. Их дает трансформатор с двумя одинаковыми вторичными обмотками или с одной обмоткой, имеющей удвоенное число витков и вывод от середины (средняя точка А). Мостовая (или мостиковая) схема (17, е) позволяет получить двухполупериодное выпрямление только с одним источником переменного напряжения, например с одной повышающей обмоткой. Для этого, правда, требуется уже не два, а четыре вентиля. Они соединены так, что пропускают ток по сопротивлению нагрузки только в одну сторону как во время положительного, так и во время отрицательного полупериода.
18. Выпрямитель переменного тока необходим для питания от сети ламповых приемников и усилителей. Наряду с вентилем в такой выпрямитель входят фильтры, которые помогают отбросить переменные составляющие пульсирующего тока и выдать «продукцию без брака» — выпрямленный ток (напряжение) без пульсаций. Чаще всего применяется П-образный RС-фильтр, в который входят электролитические конденсаторы Сф1 и Сф2 большой емкости. Для улучшения фильтрации желательно было бы увеличить и Rф, однако величина его ограничена — на этом сопротивлении не должна теряться слишком большая часть выпрямленного напряжения (Uф). Трансформатор, работающий в выпрямителе, называют силовым или сетевым.
19. Роль вентиля может выполнять электронная лампа — диод (двухэлектродная). Из ее баллона откачан воздух — создан вакуум, в котором формируется направленный поток электронов. Источник электронов — катод К нагрет до высокой температуры подогревателем П, своего рода электроплиткой. Именно в результате нагрева катода электроны выходят за его пределы (термоэлектронная эмиссия). Если между анодом А и катодом включить батарею так, чтобы на аноде был «плюс» (19, б), то в лампе появится анодный ток — движение электронов от катода к аноду. Не забывайте, что условное направление тока — от анода к катоду: так двигались бы в лампе положительные заряды. Под действием переменного напряжения в лампе появляется пульсирующий ток (19, г).
20. В простейшей усилительной лампе — триоде — на пути анодного тока установлена металлическая сетка (в современных лампах спираль). Управляющая сетка (УС) расположена близко к катоду, и поэтому напряжение, действующее между сеткой и катодом, весьма сильно влияет на величину анодного тока. К сеточной цепи (вход усилительного каскада) подключают источник усиливаемого сигнала, а в анодную цепь (выход каскада) включают нагрузку, где выделяется усиленный сигнал. Под действием входного сигнала меняется напряжение на сетке, и вместо постоянного анодного тока появляется ток сложной формы — нужная нам мощная копия. Энергию на ее создание дает анодная батарея. На анод триода всегда подают довольно высокое положительное напряжение Uв от анодной батареи или выпрямителя (50—250 в), а на накал — небольшое переменное напряжение Uн, для большинства ламп 6,3 в. Напряжение накала (его величину приближенно указывает первая цифра в названии лампы) обычно получают от отдельной обмотки силового трансформатора. Для удобства монтажа вместо одного из проводов используют металлическое шасси приемника или усилителя, и на схеме подключение к этому общему проводу показывают как соединение с шасси. Подключение к шасси часто называют заземлением. Все напряжения принято указывать относительно шасси. Для краткости говорят: «напряжение на аноде», «напряжение на сетке» и т. д., имея при этом в виду напряжение между анодом и шасси, сеткой и шасси и т. д.
21. Работу усилительного каскада хорошо иллюстрирует объединенный график, похожий на тот, который мы строили для громкоговорителя (рис. 16). Основа графика — анодно-сеточная характеристика лампы (21, а), показывающая, как меняется анодный ток Iа при изменении напряжения на сетке Uс. К этой характеристике снизу мы пристраиваем график напряжения на управляющей сетке Uc. Располагаем его так, чтобы ось Uс совпала с такой же осью на ламповой характеристике. Теперь, следуя по маршруту «график Uc— характеристика лампы», можно быстро и легко найти значение Iа для любого момента времени t. Полученное значение тока тут же переносится на третий график, показывающий, как изменяется Iа с течением времени (21, в).
Вспомните, что заход на криволинейные участки характеристики громкоговорителя — верхний и нижний загибы — приводил к нелинейным искажениям воспроизводимого звука. Точно так же работа на загибах ламповой характеристики приведет к тому, что форма графика Iа будет отличаться от формы графика Uс. Иными словами, в процессе усиления сигнала появятся нелинейные искажения. Для того чтобы не выходить за пределы нелинейного участка, на сетку вместе с сигналом подают «минус» постоянного напряжения — смещение Uсм. Этот «минус» определяет рабочую точку — режим лампы при отсутствии входного сигнала. Отрицательное смещение подбирают так, чтобы «исходная позиция» (рабочая точка) соответствовала середине прямолинейного участка на ламповой характеристике. С одной стороны граница прямолинейного участка проходит там, где начинаются положительные напряжения на сетке. Как только на сетке появится «плюс», она начнет притягивать электроны, появится сеточный ток Iс, и это приведет к некоторому уменьшению анодного тока (верхний загиб). С другой стороны прямолинейный участок ограничен областью, близкой к запиранию лампы: при больших отрицательных напряжениях сетка вообще не пропускает электроны к аноду, и анодный ток прекращается (нижний загиб).
22. Чтобы создать отрицательное смещение, можно включить в цепь сетки очень большое сопротивление (10–20 Мом). Единичные электроны всегда попадают на сетку, даже при отрицательных напряжениях на ней. Этого небольшого тока (доли микроампер) достаточно, чтобы на большом Rс создать смещение в несколько вольт.
Сопротивление в сеточной цепи — сопротивление утечки Rc (чаще всего 0,5–1 Мом) должно быть включено всегда при любой другой схеме смещения, так как всегда должен быть путь, по которому электроны смогут вернуться с сетки на катод. Иначе, накопившись на сетке, они создадут там большой «минус» и запрут лампу.
23. Обычно отрицательное смещение создают с помощью катодного сопротивления Rк. Проходя по нему, анодный ток создает напряжение Uсм = Iа0·Rк — «Плюс» этого напряжения приложен к катоду, а «минус» через Rc — к сетке. Чтобы на Rк действовало только постоянное напряжение, переменную составляющую замыкают через конденсатор Ск. Его емкостное сопротивление хс должно быть меньше Rк на самой низкой из возможных частот fмин — по крайней мере в 5—10 раз. При этом на более высоких частотах подавно будет выполняться условие хс < Rк.
Пример. Дано: Iа = 50 ма; Ucм = 10 в.
Находим: Rк = 200 ом (5, ж).
Задаемся: для 100 гц хс = 40 ом, в 5 раз меньше, чем Rк.
Находим: С не менее 50 мкф (табл. 10). Мощность сопротивления Rк не менее Pк >= 0,5 вт (рис. 8, в).
24. Усиление, которое дает каскад, так же, как выходная мощность Рвых и выходное напряжение Uвых, зависит от величины сопротивления анодной нагрузки Ra. Чем больше Ra, тем больше напряжение, которое создает на нем анодный ток (5, д) и тем больше Рвых и Uвых. В то же время чрезмерное увеличение Ra может ухудшить все эти показатели, а вдобавок еще и увеличить искажения. Вот почему для каждой лампы и каждого ее режима существует оптимальное (наивыгоднейшее) сопротивление нагрузки Rа. опт, при котором получается большое усиление, или малые искажения, или, наконец, удовлетворительно выполняются оба условия.
Если нагрузкой является обычное сопротивление, то приходится разделять постоянную и переменную составляющие анодного тока (напряжения) с помощью простейших фильтров. По цепочке Rc2 Сс2 проходит часть переменной составляющей (только переменной — в цепи конденсатор!) анодного тока и создает на Rc2 переменное напряжение Uвых. Оно и представляет собой выходной сигнал в чистом виде.