KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Психология » Капра Фритьоф - Паутина жизни. Новое научное понимание живых систем

Капра Фритьоф - Паутина жизни. Новое научное понимание живых систем

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Капра Фритьоф, "Паутина жизни. Новое научное понимание живых систем" бесплатно, без регистрации.
Перейти на страницу:

Очевидно, наиболее важная задача состояла в том, чтобы развить достаточное разнообразие метаболических способов извлечения энергии и пищи из окружающей среды. Одним из первых изобретений бактерий стала ферментация, т. е. расщепление Сахаров и преобразование их в энергетические носители — молекулы АТФ, которые подпитывают энергией все клеточные процессы26. Эта инновация позволила бактериям, способным к ферментации, добывать химические вещества в земле, грязи и воде, защищаясь тем самым и от жесткого солнечного облучения.

Некоторые из ферментаторов выработали, помимо этого, способность поглощать азот из воздуха и перерабатывать его в различные органические соединения. Связывание азота, т. е. непосредственный захват его из воздуха, требует огромных затрат энергии, и даже сегодня эта задача под силу лишь немногим специализированным бактериям. Поскольку азот является ингредиентом протеинов во всех клетках, все ныне существующие организмы для своего выживания нуждаются в бактериях, связывающих азот.

В самом начале эпохи бактерий фотосинтез — «несомненно самое важное метаболическое усовершенствование в истории жизни на планете»27 — стал первичным резервом жизненной энергии. Первые процессы фотосинтеза, изобретенные бактериями, отличались от тех, что сегодня происходят в растениях. Вместо воды в качестве источника водорода они использовали сероводород — газ, источаемый вулканами. Они соединяли его с солнечным светом и СО2 воздуха, образуя органические соединения, и никогда не вырабатывали кислород.

Эти адаптивные стратегии не только позволяли бактериям выживать и развиваться, но и постепенно начали изменять окружающую их среду. Фактически именно бактерии, почти с самого начала своего существования, сформировали первые петли обратной связи, которые в конце концов должны были неминуемо привести к появлению тесно взаимосвязанной системы — жизни и ее окружения. И хотя химия и климат ранней Земли способствовали развитию жизни, это благоприятное состояние не могло бы поддерживаться бесконечно долго без бактериальной регуляции28.

По мере того как железо и другие элементы вступали в реакции с водой, высвобождался газообразный водород; он поднимался сквозь атмосферу, где разлагался на атомы. Поскольку эти атомы слишком легки для того, чтобы их удерживало земное тяготение, весь водород должен был улетучиться, учитывая бесконтрольность процесса; через какой-нибудь миллиард лет всем океанам на планете предстояло исчезнуть. К счастью, вмешалась жизнь. На поздних стадиях фотосинтеза стал высвобождаться и поступать в воздух свободный кислород, как это происходит и сегодня, и некоторая его часть соединялась с восходящими потоками газообразного водорода, образуя при этом воду; так сохранялся определенный уровень влажности на планете и предотвращалось испарение океанов.

Тем не менее постоянный отбор СО2 из атмосферы в процессе фотосинтеза вызвал другую проблему. В начале эпохи бактерий энергия солнечного излучения была на 25 % меньше, чем сейчас, и СО2 в атмосфере был совершенно необходим, чтобы создавать тепличный эффект и поддерживать температуру планеты в приемлемом диапазоне. Если бы отбор СО2 происходил без какой-либо компенсации, Земля бы замерзла и ранние формы бактерий погибли бы.

Эта опасная тенденция была остановлена ферментирующими бактериями, которые, возможно, сформировались еще до появления фотосинтеза. В процессе производства молекул АТФ из Сахаров ферментаторы также вырабатывали метан и СО2 в виде отходов. Последние поступали в атмосферу, где и восстанавливали планетарный тепличный эффект. Таким образом, ферментация и фотосинтез стали взаимно балансирующими процессами системы ранней Гайи.

Солнечный свет, проходивший сквозь атмосферу древней Земли, все еще содержал обжигающую ультрафиолетовую радиацию, и теперь бактериям приходилось балансировать между защитой от облучения и необходимостью получать солнечную энергию для фотосинтеза. Это привело к эволюции многочисленных сенсорных систем и двигательных механизмов. Некоторые виды бактерий мигрировали в воды, богатые определенными солями, выполнявшими роль солнечных фильтров; другие нашли защиту в песке; а некоторые тем временем развили пигменты, в которых поглощались вредоносные лучи. Многие виды организовывали огромные колонии — многослойные «скатерти» из микробов, где верхние слои обжигались и умирали, но защищали нижний слой своими мертвыми телами29.

Помимо защитной фильтрации, бактерии выработали также механизмы для починки ДНК, поврежденных радиацией, в том числе специально для этого предназначенные ферменты. Сегодня почти все организмы по-прежнему содержат в себе такие «ферменты-ремонтники» — еще одно пережившее миллиарды лет изобретение микрокосмоса30.

Вместо того чтобы использовать для починки собственный генетический материал, бактерии иногда заимствовали фрагменты ДНК у своих соседей по густонаселенному окружению. Этот метод постепенно эволюционировал в непрерывный обмен генами, который и определил самое эффективное направление эволюции бактерий. У высших форм жизни рекомбинация генов различных особей связана с воспроизведением, но в мире бактерий два эти феномена протекают независимо. Бактериальные клетки воспроизводятся бесполым путем, но зато они непрерывно обмениваются генами. По словам Маргулис и Саган,

Мы обмениваемся генами «вертикально» — через поколения, — тогда как бактерии меняются ими «горизонтально» — непосредственно со своими соседями из того же поколения. В результате получается, что генетически неустойчивые бактерии функционально бессмертны, а для эукариотов пол связан со смертью31.

Из-за небольшого числа постоянных генов в бактериальной клетке — как правило, меньше одного процента от числа генов в ядерной клетке — бактерии по необходимости работают командами. Разные виды сотрудничают и помогают друг другу, предоставляя дополнительный генетический материал. Крупные сообщества таких бактериальных команд могут функционировать с согласованностью единого организма, выполняя задачи, которые индивидуально не под силу никакой из них.

К концу первого миллиарда лет с момента возникновения жизни Земля кишела бактериями. Были изобретены тысячи биотехнологий — большинство из них, безусловно, известно сегодня, — и, посредством сотрудничества и непрерывного обмена генами, микроорганизмы начали регулировать условия для жизни на всей планете, как они делают это и поныне. Фактически многие виды бактерий ранней эпохи микрокосма дожили, существенно не изменившись, до наших дней.

В ходе последующих стадий эволюции, микроорганизмы образовывали союзы и эволюционировали совместно с растениями и животными, и сегодня наша окружающая среда в такой степени переполнена бактериями, что почти невозможно определить, где кончается неодушевленный мир и где начинается жизнь. Мы склонны ассоциировать бактерии с болезнью, но они жизненно важны и для нашего выживания, равно как и для выживания животных и растений. «Если отбросить в сторону наши поверхностные различия, можно сказать, что все мы представляем собой ходячие сообщества бактерий, — пишут Маргулис и Саган. — Весь мир мерцает, как ландшафт пуантилиста, составленный из крошечных живых существ»32.

Кислородный кризис

Вследствие того, что бактериальная паутина разворачивалась и заполняла все доступные пространства в водах, скалах и грязевых низинах, ее энергетические потребности привели к серьезному водородному истощению атмосферы. Углеводы, играющие существенную роль во всех процессах жизни, представляют собой сложные структуры из атомов углерода, водорода и кислорода. Чтобы построить эти структуры, фотосинтезирующие бактерии извлекали углерод и кислород в виде СО2, подобно современным растениям. Кроме того, они получали водород в форме газа из воздуха и из сероводорода, извергающегося из вулканов. Однако легкий газообразный водород продолжал улетучиваться в космос, и со временем одного сероводорода стало недоставать.

Огромное количество водорода, конечно, есть в воде (Н2О), однако связи между молекулами водорода и кислорода в воде гораздо прочнее, чем между двумя атомами водорода в его газе (Н2) или в сероводороде (H2S). Бактерии, осуществляющие фотосинтез, не были способны разорвать эти крепкие связи, пока особый вид сине-зеленых бактерий не изобрел новый тип фотосинтеза, который навсегда решил проблему водорода.

Новый эволюционный тип бактерий, предков современных сине-зеленых водорослей, использовал солнечный свет с более высокой энергией (с более короткими длинами волн) для того, чтобы расщеплять молекулы воды на составляющие их водород и кислород. Они забирали водород для формирования Сахаров и других углеводов, а кислород уходил в воздух. Это изъятие водорода из воды, представляющей один из наиболее обильных ресурсов планеты, стало чрезвычайной эволюционной победой, которая очень глубоко повлияла на последующее раскрытие жизни. И Линн Маргулис убеждена в том, что «пришествие кислородного фотосинтеза было тем исключительным событием, которое в конечном итоге привело к формированию нашей современной окружающей среды»33.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*