Евгений Елизаров - Сколько будет 2+2?
Таким образом, все это очень сильно напоминает известный еще из Геродотовской Истории сценарий. Но если он реализуется даже на уровне одноклеточных организмов, приходится предположить, что способность действовать в соответствии с этой вечной стратегией каким-то таинственным образом формируется не только в человеческом, но и в любом живом сообществе вообще.
Трудно предположить, что такая стратегия заранее заложена в генетической памяти каждой отдельно взятой клетки. Поэтому необходимо признать, что там, где из отдельных, наделенных своими особенностями индивидов формируется новый уровень организации живой материи – сообщество организмов, вдруг появляются и какие-то новые свойства, которыми не обладают индивиды . Но если так, то все эти и, возможно, какие-то иные, о существовании которых мы пока еще и не догадываемся, качества, не присущие отдельно взятым индивидам, в свою очередь должны входить в итоговую сумму. Поэтому, строго говоря, там, где в результате интеграции единичных вещей в некую общность формируются дополнительные свойства, «два плюс два» равно не «четырем», но некоторой сумме, состоящей из «четырех» и какой-то «дельты качества».
Именно эта не всегда заметная (но всегда существующая!) «дельта качества» и концентрирует в себе то, что в действительности отличает один уровень явлений от другого.
Таким образом, если видеть в логической операции обобщения не отвлеченную от всякой конкретности гимнастику ума, но строгий аналог каких-то реальных процессов, которые «вживую» протекают в окружающей нас природе, ее ни в коем случае нельзя будет свести к одному только отбрасыванию индивидуальных характеристик единичных вещей. Конечно, что-то от индивидуального, должно теряться и здесь, но все же что-то обязано и приобретаться. Поэтому главным в любом логическом обобщении должно быть выявление именно того, что приобретается в дополнение к общей образующейся сумме качеств, а вовсе не того, что остается за вычетом исключаемых из анализа свойств.
Если кого не убеждает приведенный пример, можно сослаться на другой, куда более знаменитый, ибо он восходит к одному из величайших знатоков той материи, которая затрагивается в нем. Поодиночке едва ли не каждый французский солдат, – утверждал Наполеон, – уступал по своим боевым качествам прекрасно вышколенным мамлюкам. Но несколько десятков гренадеров уже сравнивались с аналогичным подразделением противника. Батальон же был способен устоять в столкновении и со значительно превосходящей численностью. Во время сирийского похода в сражении при горе Табор двухтысячный отряд французской пехоты под началом одного из наполеоновских командиров в течение целого дня сдерживал яростные атаки 25000 кавалеристов паши Дамаска, которые к тому же были поддержаны десятью тысячами пехоты. При перекличке после сражения обнаружилось, что только два солдата погибли и около шестидесяти были ранены. Таким образом, превосходство дисциплинированной французской пехоты, построенной в каре, перед неорганизованной массированной кавалерийской атакой было продемонстрировано со всей убедительностью. И это при том, что по личной выучке кавалеристы всех армий мира всегда превосходили пехотинцев. (Впрочем, турок била не только французская пехота: о дивизионные каре будущего российского фельдмаршала П.А.Румянцева под Кагулом разбилась 150-тысячная армия турецкого визиря, поддержанного к тому же 80-тысячной татарской конницей, которая угрожала тылу российского воинства.)
Еще один пример, известный любому, кто знаком с управлением. При формировании даже простой кооперации исполнителей всегда возникает дополнительная производительная сила: коллектив объединенных в бригаду грузчиков, землекопов и так далее способен обеспечить несколько большую выработку, чем механическая сумма тех же людей, но работающих независимо друг от друга. Так что и здесь «два плюс два» равно сумме, состоящей из «четырех» и некоторой «дельты качества».
Именно эта деформирующая прогнозируемый результат сложения «дельта» наводит на мысль о том, что уровню сообщества (будь то сообщество биологических организмов, солдат, рабочих и так далее), свойствен какой-то новый, в принципе неведомый индивидам фактор. Сегодня мы знаем, что этот фактор представляет собой не что иное, как организацию. При этом принципы организации ни в какой форме не содержатся в генотипе индивидов. В самом деле, трудно предположить, что уже генотип человека содержит информацию о том, что в виду кавалерийской атаки индивиды должны стремительно образовывать прямоугольник, один из углов которого обращен к неприятелю, чтобы, во-первых, рассечь его и уже тем нарушить управление, во-вторых, встретить ружейными залпами сразу двух фасов, а под артиллерийским огнем, – напротив, рассыпать свой строй. Точно так же трудно предположить способность генотипа содержать в себе правила разделения и кооперации труда. Так что новое начало может возникать только там, где возникает какая-то общность. Но о самом существовании этого фундаментального начала мы впервые узнаем лишь из каких-то количественных аномалий.
Обнаруживаемые в расчетах количественные аномалии, в общем-то, всегда играли большую роль в развитии научных представлений. Вспомним. В последней четверти XVI века близ Копенгагена на островке Иен была построена обсерватория – замок Уранибург. Европа еще не знала такой обсерватории, которую создал там изобретатель секстанта астроном Тихо Браге, оснастивший ее самыми лучшими инструментами того времени. Изо дня в день с необычайной пунктуальностью и тщательностью он наблюдал движение небесных тел и записывал результаты своих наблюдений. Итогом его 20-летних трудов стала, говоря сегодняшним языком, грандиозная «база данных», касающаяся планет, звезд и комет, которая отличалась не только своей полнотой, но и исключительной точностью. В последние годы своей жизни Тихо Браге оказался в опале и был вынужден жить в Праге, где его помощником стал молодой немецкий ученый Иоганн Кеплер. Год за годом тот обрабатывал результаты наблюдений своего учителя. Им был проделан колоссальный объем вычислений. Напомним, что логарифмы, которые, по словам, Карла Гаусса, удвоили жизнь астрономов, тогда еще не были изобретены (потомок старинного воинственного шотландского рода Джон Непер опубликует свое знаменитое «Описание удивительных таблиц логарифмов» лишь незадолго до смерти, в 1614 году). Поэтому труд Кеплера не может не вызвать у нас изумления. Беспощадно требовательный к результату научного анализа, он не остановился даже перед тем, чтобы начать всю работу заново, когда обнаружил, что между теоретически предсказываемым и фактическим положением Марса существует расхождение в восемь минут дуги. Казалось бы, ошибка была не столь и велика, и другой на его месте, возможно, не обратил бы на нее внимание.
Для того, чтобы понять, порядок величины, о которой идет речь, нужно напомнить, что стопроцентное зрение человека позволяет различать объекты, линейные размеры которых достигают одной угловой минуты. Иначе говоря, все что менее одной минуты, нормальным глазом просто неразличимо. Так что восемь минут – это почти на границе видимости. Например, на том расстоянии, на котором обычно держат перед собой книгу, одна угловая минута – это примерно одна десятая доля миллиметра (стандарт полиграфического качества – 300 точек на дюйм – исходит именно из этой величины). Поэтому текст, набранный шрифтом, не превышающим восемь минут, был бы очень труден для восприятия.
Но не таков был Кеплер, чтобы пренебречь даже столь незначительным отклонением от расчетного. Он сам потом писал, что если бы желал пренебречь восемью минутами долготы, то давно закончил бы свой труд. Но пренебречь ошибкой для него было невозможно. И в конечном счете именно это расхождение привело его к одному из самых грандиозных открытий в науке. Девять лет аналитической работы увенчались созданием трех законов движения планет. Ничтожные восемь минут окончательно изменили всю картину мира.
Позднее предсказанные именно его законами отклонения траекторий движения небесных тел послужили индикатором того, что за орбитой Урана должна существовать еще одна массивная планета. И вот в 1846 году И. Галле по теоретическим предсказаниям У. Ж. Леверье и Дж. К. Адамса открывает Нептун, удаленность которого от Земли до того препятствовала его обнаружению.
Таким образом, результат любого сложения не может быть ограничен пустыми рамками какого-то абстрактного, отвлеченного от чего бы то ни было вообще «количества». Он всегда обязан учитывать качественные характеристики как того круга вещей, в котором он непосредственно выполняется, так и той ступени классификации явлений, на которую он экстраполируется нами.
Другими словами, получаемый результат еще подлежит определенному истолкованию. Только в контексте этого истолкования, которое обязано принимать в расчет решительно все, что отличает сформированную нами модель от того среза объективной реальности, на которую мы хотим его распространить, достигается и однозначность прочтения, и точность. Взятый же сам по себе, вне какой бы то ни было интерпретации, он не говорит почти ни о чем. А зачастую, несмотря на совпадение с прогнозируемым итогом нашего «сложения», лишь заводит в тупик мысль исследователя, ибо это совпадение может быть и случайным.