Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью
Но даже после перехода на удобную для использования систему счисления понадобилось не одно столетие, прежде чем люди признали сложение, вычитание, умножение и деление основополагающими математическими операциями и медленно осознали, что специальные символы облегчат выполнение этих операций. Поэтому лишь к XVI в. западный мир созрел для теории вероятностей. Несмотря на неудачную систему счисления, именно римляне, эти завоеватели греков, сделали первые шаги к пониманию случайности.
Вообще-то римляне относились к математике с презрением, по крайней мере, к математике греков. По словам римского сенатора Цицерона, жившего с 106 по 43 гг. до н. э., «греки более всего почитали геометрию; соответственно, в математике они достигли величайших успехов. Однако мы, действуя в пределах этого искусства, извлекли из математики пользу, приспособив ее для измерений и вычислений»{32}. В самом деле, в то время как в греческих книгах доказывалось равенство абстрактных треугольников, в римских книгах приводился ход вычислений глубины реки, другой берег которой занял неприятель{33}. Неудивительно, что греки дали миру стольких великих математиков: Архимеда, Диофанта, Евклида, Евдокса, Пифагора, Фалеса, а римляне — ни одного. С такими-то приоритетами{34}! Римляне ценили удобства и вели войны, их не интересовали истина и красота. Но именно благодаря своей практичности они разглядели пользу от понимания вероятности. Поэтому, не видя особого проку от абстрактной геометрии, Цицерон написал, что «вероятность ведет нас по жизни»{35}.
Цицерона можно было бы назвать величайшим античным поборником принципа вероятности. Он прибегал к нему, когда оспаривал общепринятое объяснение успеха в азартных играх как божественного вмешательства, говоря, что «тому, кто играет, рано или поздно выпадет бросок Венеры, рано или поздно выпадет и два, три броска подряд. Но надо быть слабоумным, чтобы утверждать, будто это — результат личного вмешательства Венеры, а не чистой воды везенье»{36}. Цицерон верил, что событие возможно предвидеть, пусть даже оно и произойдет совершенно случайно. Он даже приводил доказательство из области статистики, высмеивая веру в астрологию. Цицерону не нравилось, что астрология, хоть и запрещенная в Риме, процветала; он отметил, что в 216 г. до н. э. в сражении при Каннах Ганнибал со своим пятидесятитысячным карфагенским войском, а также союзными войсками разгромил гораздо более многочисленную римскую армию: из 80 тыс. солдат полегло 60 тыс. «Едва ли у всех римских солдат, погибших в битве, был одинаковый гороскоп, — говорил Цицерон. И тем не менее всех постигла одна и та же участь{37}». Цицерону наверняка было бы приятно узнать, что пару тысячелетий спустя в одном солидном научном журнале ученые, изучив обоснованность астрологических предсказаний, согласились с его выводами{38}. С другой стороны, сегодня в «Нью-Йорк пост» напечатали, что мне, Стрельцу, следует отнестись к критике объективно, приняв ее во внимание.
В итоге Цицерон внес немалый вклад в развитие идей вероятности — термин probabilis, который он использовал, лег в основу современного термина. И лишь в «Дигестах», одной из частей римского права, составленного императором Юстинианом I, появляется документ, в котором впервые вероятность упоминается как юридический термин{39}. Чтобы оценить то, как римляне применили математические суждения в теории права, необходимо представлять себе те времена: римское право в Средние века основывалось на обычном, т. е. основанном на обычаях, праве германских племен. Которые мягкостью не отличались. Взять, к примеру, свидетельские показания. Правдивость мужа, отрицающего любовную связь с портнихой жены, определялась бы не способностью муженька выдержать уколы адвоката противной стороны, а тем, станет ли он придерживаться своей версии даже после уколов — настоящих, каленым железом. (Вот увидите: стоит только вернуться к такому обычаю, как очень многие будут разводиться без всякой помощи со стороны суда.) И если обвиняемый скажет, что колесница даже не пыталась затормозить, а привлеченный в качестве эксперта свидетель по следам лошадиных копыт заявит, что пыталась, германское право предписывало довольно-таки простой рецепт: «Пусть спор разрешится посредством поединка на копьях между двумя с обеих сторон. Проигравший будет сочтен лжесвидетелем, и ему отсекут правую руку»{40}.
Заменяя или скорее дополняя судебную практику сражением, римляне стремились с помощью математической точности исправить недостатки своей старой, произвольной системы. Как мы видели, римская идея справедливости включала в себя прогрессивные понятия. Признавая, что доказательства и свидетельские показания зачастую вступают в противоречие и что наилучший способ разрешить такое противоречие — выразить неизбежную неопределенность в количественном виде, римляне ввели понятие неполного доказательства. Оно применялось в тех случаях, когда отсутствовали неопровержимые основания для того, чтобы верить или не верить доказательствам или свидетельским показаниям. В некоторых случаях римская теория допускала еще более детальные степени доказательства, как, например, в положении о церкви: «епископ может быть осужден только при наличии семидесяти двух свидетелей… иерей может быть осужден только при наличии сорока четырех свидетелей, дьякон города Рима — при наличии тридцати шести свидетелей, иподьякон, пономарь, заклинатель, изгоняющий беса, псаломщик или дверник — при семи свидетелях{41}». Чтобы человека осудили при таких правилах, он должен не только совершить преступление, но и убедить в этом других. И все же признание того, что вероятность истины в показаниях может варьировать и что необходимы правила для сочетания таких вероятностей, — уже что-то. И вот в таком маловероятном месте, как древний Рим, впервые возник упорядоченный набор правил, в основе которых лежала вероятность.
К сожалению, едва ли возможно с ловкостью жонглировать числами вроде «VIII» или «XIV». В конце концов, хотя римское право было не лишено определенной доли юридического рационализма и связности, ему недоставало математической обоснованности. К примеру, в римском праве два неполных доказательства составляли полное доказательство. Это может показаться резонным тому, чей ум не привык мыслить категориями количества. При сегодняшней распространенности дробей напрашивается вопрос: если два неполных доказательства составляют полное доказательство, то чему равны три неполных доказательства? Согласно правильному методу сложения вероятностей, полное доказательство невозможно составить не только из двух неполных доказательств, но и из любого количества неполных доказательств, потому что при сложении вероятностей нужно не складывать их, а умножать.
Что подводит нас к очередному закону, правилу сложения вероятностей: «Если два вероятных события, А и В, не зависят друг от друга, то вероятность того, что А и В произойдут, равна произведению их отдельных вероятностей». Предположим, каждый год у человека женатого вероятность развестись равна примерно 1 к 50. С другой стороны, каждый год у полицейского вероятность погибнуть при исполнении равна 1 к 5000. Какова вероятность для женатого полицейского развестись и погибнуть в одном и том же году? Согласно вышеприведенному принципу, если события независимы друг от друга, шансы окажутся примерно такими: 1/50 × 1/5000, то есть 1/250000. Конечно же, события эти не являются независимыми друг от друга, они связаны: если полицейский погибнет, как он, черт возьми, может развестись? В таком случае вероятность такого исключительного невезения на самом деле получается чуть менее 1 из 250 000.
Но почему умножение, а не сложение? Предположим, у вас фотографии 100 парней, с которыми вы познакомились через сайт знакомств в Интернете, тех самых парней, в профиле у которых висит фотография, напоминающая Тома Круза, а в жизни они скорее смахивают на Дэнни Де Вито. И вот вы подбираете наиболее привлекательных кандидатов. Предположим также, что на оборотной стороне каждой фотографии вы пишете два качества парня, к примеру, честный («да» или «нет») и привлекательный («да» или «нет»). И, наконец, предположим, что 1 из 10 возможных родственных душ получает в каждом случае «да» или «нет». Сколько парней из 100 пройдут тест по обеим категориям? Возьмем честность как основную черту (впрочем, можно основной сделать и привлекательность). Поскольку 1 из 10 получает «да» в категории «честный», в итоге останутся 10 парней из 100. Сколько парней из этих 10 окажутся привлекательными? Снова 1 из 10. В итоге у вас остается одна фотография. Первые 10 из 100 снижают вероятность на 1/10, то же самое происходит и при следующем отборе — 1 из 10. Как результат, 1 из 100. Вот почему мы умножаем. И если ваши требования не ограничиваются честностью и привлекательностью, придется все умножать и умножать, так что… удачи!