Стаффорд Бир - Мозг фирмы
F*[PD.M*(DP*PM)]. (2Ь)
Это выражение можно ввести в правую часть выражения (1с), но мы не можем пренебрегать высказываниями (2) и (4), т. е. M * RD и R * PM , поскольку они ранее фигурировали в левой части выражения (1с). Из множества путей их объединения наиболее удобным кажется следующий: переписать ( PM * R ) как ( PM * R ) ( M * D ), поскольку M * PD , и ( RD * P ) как R * PM )( D * P ), поскольку R * PM . Тогда левая часть выражения (1с) сведется к выражению
[(PM*RPM) (M*D*P)].
Продолжая тем же способом, получаем:
Окончательный оператор (F)
[ (PM*R*PM) (M*D*P) ] * [F* [PD.M* (D.R*PM) ] S*D*Pf].
В окончательном операторе символ F выделен полужирным шрифтом. Это утверждение используется, чтобы показать, что полное перечисление его последствий здесь опущено. Логика, конечно, приведет вновь к операторам, предшествующим F.
Ранее отмечалось наличие многих логически эквивалентных путей написания этого полного выражения. Что мы выиграли от того, что записали одно из них в столь сложной форме? Вопрос вполне правомерен, поскольку общее выражение можно было бы (на языке логики) сильно сжать. Ответ в том, что мы стремились к пониманию системы логических решений и к предоставлению возможности самостоятельно рассмотреть множество подходов к решению, поскольку мультинод может выбирать любой путь, который ему предпочтителен. _
Предположим, что уже почти принято решение, касающееся планов сбыта. Один из восьми рассмотренных при этом планов начинает выглядеть непривлекательным и исключается. Тогда мы обращаемся к оператору (F) слева и — смотрим на D. Согласно первому правилу мы должны рассмотреть влияние этого решения на Р. Дальше мы замечаем, что это же решение влияет на F, и далее рассмотрение должно распространиться на М (фактор Р уже был рассмотрен, а D оказался избыточным). Рассмотрение М включает его влияние на фактор R, в свою очередь влияющий как на Р, так и на М Далее, F означает также обдумывание в отношении фактора S , который прямо влияет на D, о котором и идет речь, а последний влияет на Р и F, о чем мы уже знаем Такова будет интерпретация системы, если она начинается с D. Попытайтесь теперь сформулировать разумные правила для проверки влияния решения относительно D исходя из первой таблицы — оператора (А). Новое обращение к переменным быстро приведет Вас к неразрешимым узлам противоречий. Попытайтесь изобразить все это графически — график быстро станет выглядеть как запутанный котенком клубок ниток. Мы снова оказываемся в плену растущего многообразия.
Итак алгебра решений дала нам уже полезное руководство, но наша действительная цель состояла в том, чтобы создать полезную метрику-измеритель решения. Тогда для этой цели мы обязаны записать наш оператор (F) полностью, иначе говоря, мы обязаны показать варианты. Фактор Р имеет четыре составляющие возможные заводские стратегии. Тогда там, где в операторе ( F ) присутствует Р. следует писать
Р(р1, р2, р3, p4) и т. д.
Давайте теперь вернемся к рассмотрению D или, как мы условились, представим его в виде D ( d 1, d 2, d 3, d 4, d 5, d 6, d7, d 8). В соответствии с нашим примером один из этих планов отпал — таково было решение. Первое заключение тогда состоит в том, что разнообразие D уменьшено с 8 до 7, т. е. с 3 до 2,8 бит. Это означает, что общая неопределенность уменьшилась на 0,2 бита. Назовем ее явным показателем принятого решения. Однако мы знаем, что осталось еще много более важных факторов, чем этот и у нас есть правило выяснения дальнейших эффектов. Что можно, например, сказать относительно четырех стратегий производства? Планы 2 и 4, как мы выяснили, неэффективны, хотя мы давно заявили, что стратегия производства не влияет на планы сбыта (поскольку изделия могут храниться на складах), но обратное неверно Давайте примем, что возможность dg, теперь исключенная, была единственным планом распространения нашего товара в отдаленных уголках страны. Продажа именно в этих районах придавала смысл производственным стратегиям-планам 2 и 4, поскольку в них предусматривалось использование расположенных там предприятий. Если бы эти производственные стратегии были сначала исключены, то план dg, однако, мог бы быть реализован с помощью почтовых пересылок.
Все это означает, что в процессе уменьшения общей неопределенности в 17 бит всего навсего на 0,2 бит, т. е. при исключении варианта dg, первоначальная неопределенность для Р уменьшается на 1 бит. Но мы показали, что все это сказывается и на F И в самом деле, планы движения денег f „ f -, L и f, связаны (как выяснилось) с реализацией стратегий производства 2 и 4. Разнообразие вариантов для F снизилось при этом с 8 (3 бита) до 4 (2 бита) — еще одно уменьшение неопределенности на 1 бит. Логика заставляет нас рассмотреть влияние всего этого на переменную М. Теперь если нельзя рассчитывать на распространение нашего товара в отдаленных регионах (d8), то это, без сомнения, означает изменение стратегии сбыта. Конечно, следовало бы оо этом подумать сразу. Если так, то как же следовало бы воспринимать решение об исключении d 8 до обсуждения рассмотрения стратегии М? Кто принял это решение, да и было ли оно правильным? Это именно те вопросы, которые наш метод управления побуждает нас ставить, ставить быстро и без обиняков.
Допустим такую возможность, что в конце концов полностью возобладает решение d 8. To гд a большинство рыночных стратегий, в которых столько внимания отводилось проблеме торговли в отдаленных регионах, может стать неуместным. Предположим что пять из них исключаются. Тогда останется три, т. е. неопределенность составит всего 1 ,58 бита. Это говорит о том, что пришло время рассмотреть R . Для этой переменной, как ни странно, ничего не изменилось. Рассмотрение нашего сценария как выяснилось, никак не влияет на характер нашего товара. В таком случае влияние R на Р и М не вызывает других последствий. Однако маршрут ( D * P )* F * S по-прежнему требует рассмотрения. Здесь S, и S- как две кадровые стратегии, зависящие от этой цепочки, теперь отпадают как ненужные (легко догадаться, почему). Тогда неопределенность уменьшается еще на 1 бит. Но это влияет на D .
На первый взгляд цикл полностью завершен. Конечно, мы начали с рассмотрения D.. Это верно, но мы, в частности, начали с исключения d8. А что будет с d 2, d 4 и d 7 Оказалось (и это весьма правдоподобно), что последовательное исключение пяти стратегий сбыта и двух видов кадровой политики (как следствия отказа от do ), действуя на и, приводит к исключению и этих планов сбыта. Последнее, как мы знаем логически воздействует на Р и F. К счастью, в данном примере (заметим для самооправдания) на производственных стратегиях данное воздействие далее не сказывается — хотя, упаси боже, в принципе могло бы сказаться. Но на Р действительно сказывается последовательное сокращение разнообразия F было вначале вызвано отказом от двух производственных стратегий. Теперь же, когда отпали еще три стратегии сбыта потерял смысл и план f 5, как обслуживающий их нужды. Теперь обратимся к последнему оператору F , ставшему весьма важной составляющей. Нам вновь предстоит просмотреть все аргументы, начиная с первого появления F, поскольку число разнообразий этих планов теперь снизилось до трех (1,58 бит).
Кто-то сказал, что d8 исключается, и с этим все согласились. Неопределенность принятия решения всей цепи решений претерпела уменьшение вследствие незначительного уменьшения ее вначале на 0,2 бита. Теперь вновь рассмотрим все "поле боя" и определим реальную эффективность этого решения:
D — начальная неопределенность 3 бита уменьшена до 2,8 бит (явно);
Р — начальная неопределенность 2 бита уменьшена до 1 бита (последовательно);
F — начальная неопределенность 3 бита уменьшена до 2 бит (последовательно);
М — начальная неопределенность 3 бита уменьшена до 1,58 бита (последовательно) ;
S — начальная неопределенность 2 бита уменьшена до 1 бита (последовательно);
D — неопределенность после уменьшения до 2,8 бит уменьшена до 2 бит (рефлексивно);
F — неопределенность после уменьшения на 2 бита уменьшена до 1,58 бита (рефлексивно).
Так выглядит последовательность результатов, вызванных самым первым решением
- исключить d8:
Переменная
Начальное
Результирующие
разнообразие
разнообразие
(бит)
(бит)
Р
2
1,0
М
3
1,58
F
3
1,58
S
2
1,0
R
4
4,0
D
3
2,0
Общее разнообразие
17
стало 11,16
Итак, небольшое решение, всего на 0,2 бита уменьшающее неопределенность, фактически снизило ее одним "ударом" на 5,84 бита. Число возможных вариантов таким образом сократилось с 130 000 до немногим более 2000.