KnigaRead.com/

Сергей Зимов - Азбука рисунков природы

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Сергей Зимов, "Азбука рисунков природы" бесплатно, без регистрации.
Перейти на страницу:

Рис. 16


Теперь немного изменим постановку задачи. Пусть напряжения вдоль бруска одинаковы и нарастают равномерно, но неравномерна по длине его прочность (см. рис. 17, а). В этом случае первый разрыв возникнет в точке минимальной прочности бруска, в последующем фронт разрушений будет отодвигаться от этой точки. Каждый новый разрыв при этом будет возникать во все более напряженной части бруска. Поэтому расстояния между разрывами будут закономерно увеличиваться, так как для уравновешивания возрастающих внутренних напряжений требуется все большая сила трения и, следовательно, длина бруска. В итоге, наращивание напряжений приведет к формированию симметричной, пространственно-упорядоченной, но не периодической структуры. При удалении от первого разрыва расстояние между ними и их ширина будут нарастать (см. рис. 17, г).

Рис. 17


Зададим другие условия. Пусть температурные напряжения в бруске равномерно снижаются от центра к краям, а прочность бруска будет одинакова по всей его длине. При этом со временем она будет равномерно снижаться. Рассмотрим левую от максимума напряжений часть модели (рис. 18, а). Последовательность формирования в таких условиях структуры видна на рисунке. Расстояние между разрывами и их ширина здесь уменьшаются по мере удаления от точки первоначального максимума напряжений. Отметим, что в этом примере при снижении прочности бруска более чем в 2 раза относительно уровня, соответствующего появлению первого разрыва, в центре структуры начнут образовываться разрывы второй генерации. При снижении прочности в 4 раза появятся разрывы третьей генерации и т. д. (см. рис. 18, б—д).

Рис. 18


Рассмотренные примеры показали нам появление закономерной пространственной упорядоченности в результате явлений, изменяющихся во времени и пространстве непериодически.

Теперь рассмотрим подобный пример, но с нелинейным законом разгрузки напряжений. Примем те же условия, что и в предыдущей модели, но зададим, что бесконечный брусок жестко закреплен к недеформируемому основанию. Зададим также, что он охлаждается с поверхности, в его основании температура не меняется, а изменение температуры в толще бруска подчиняется линейному закону (это задача, которую рассматривал Б. Н. Достовалов).

При охлаждении в бруске возникают растягивающие напряжения, они также будут изменяться по линейному закону. У поверхности они равны σx = EαΔt (Δt — величина охлаждения поверхности), у основания бруска — нулю. Так как температурное растяжение бруска по длине равномерно, то никаких сдвигов как внутри бруска, так и относительно жесткого основания не происходит, касательных напряжений не возникает. Напряженные слои бруска как бы пассивно лежат один на другом и на основании. Растягивающие напряжения в них уравновешиваются внутренним сцеплением. При достижении напряжениями предела длительной прочности (σx = σпред) образуется разрыв. Вблизи него растягивающие напряжения перестают сдерживаться силами внутреннего сцепления, и берега разрыва под действием растягивающих напряжений стремятся разойтись. Но так как его основание закреплено жестко, то смещается лишь его верхняя часть. В итоге, вблизи разрыва происходит сдвиг бруска (рис. 19).

Рис. 19


Введем допущение, что вертикальные деформации в бруске отсутствуют — сдвиг плоскопараллельный. Выделим вблизи разрыва элементарный отрезок бруска шириной Δx. К одной его вертикальной грани приложена сила Fx = σxh/2, к другой — Fx-Δx = σx-Δxh/2, их результирующая ΔFx = Δσxh/2 уравновешивается касательными напряжениями внутри элементарного бруска, сумму которых можно представить касательной силой Qx, приложенной к верхней грани элементарного бруска. Запишем закон Гука для сдвига: Qx = ΔxGSx/h, где G — модуль сдвига, Sx — абсолютный сдвиг. Приравняв действующие силы, получаем:

Δσxh/2 = ΔxGSx/h или dσx/dx = -2GSx/h2.

Величину сдвига верхней части элементарного бруска S можно определить, рассчитав, насколько в сумме сократилась длина части бруска, лежащая вправо от элементарного бруска. Эту часть также разобьем на элементарные бруски шириной Δx. После образования разрыва верхняя грань каждого из них в соответствии с законом Гука сжалась на величину Δl = Δx(σпред - σx)/Е. Запишем dl = (σпред - σx) dx/E. В итоге, после интегрирования получаем сдвиг элементарного бруска:

Подставив это выражение в полученное выше равенство, получим уравнение

Его решение, с учетом того, что в точке разрыва нормальные растягивающие напряжения отсутствуют, дает зависимость

В итоге получаем, что после образования трещины напряжения у ее края равны нулю, а при удалении экспоненциально асимптотически увеличиваются, стремясь на бесконечности к величине, равной напряжениям в ненарушенном массиве. В данном случае — к напряжениям, равным прочности бруска на разрыв (см. рис. 19, в), т. е. четкую зону разгрузки выделить нельзя, теоретически трещина разгружает в той или иной степени весь массив. Если так, то в нашей модели вторая трещина, если температура не снижается, должна возникнуть на бесконечном расстоянии от первой. Но при удалении от трещины напряжения растут очень быстро, и на расстоянии, в несколько раз превышающем глубину трещины, разгрузка напряжений почти незаметна. Но продолжим рассматривать идеальную схему.

Примем, что однородный брусок имеет конечные размеры, тогда у его краев будет происходить разгрузка напряжений так же, как будто брусок ограничен трещинами. Края разгружают весь массив, чем дальше от них, тем в меньшей степени. Максимальные напряжения при этом будут наблюдаться в центре бруска, и при снижении его температуры здесь возникнет трещина. При большем снижении температуры эти два бруска, в свою очередь, разорвутся пополам трещинами новой генерации. Еще большее снижение приводит к образованию еще одной генерации и т. д. Глубина проникновения трещин в нашем примере одинакова — трещина проникает до основания бруска. В отличие от предыдущего примера, когда новые генерации появлялись при снижении прочности, в этом ширина всех трещин будет одинаковой. Первоначальные более широкие трещины с появлением соседних будут немного закрываться. В итоге мы получим строго упорядоченный рисунок.

Изменим условия эксперимента. Начнем охлаждать протяженный брусок, имея максимум охлаждения в центре (рис. 20, а). Здесь напряжения в первую очередь достигнут величины, равной прочности, и появится трещина. Ее появление приведет к формированию вокруг двух новых максимумов напряжений (см. рис. 20, б). Последующее охлаждение бруска приведет к заложению в этих точках новых трещин. Соответственно уже рядом с ними появятся новые максимумы напряжений (см. рис. 20, в) и т. д. Если наклон кривой функции напряжений при этом в ходе их наращивания не изменится, то в итоге появится пространственная периодическая структура.

Рассмотрим теперь другое явление — складки. Их простейший (и неприятный) пример — складки на бумаге: намочите кромку листа — и она начнет разбухать, появятся сжимающие напряжения и складки. Это антипод трещин усыхания. Антипод морозобойных трещин — температурные складки. Чтобы их получить, наклейте полоску липкой пластиковой ленты (но не натягивая ее) на линейку и нагрейте ее. А еще лучше склеить лавсановую ленту с тонкой полиэтиленовой (у этого материала очень высокий коэффициент температурного расширения), и после нагрева вы получите мелкие крутые полиэтиленовые складки. А теперь этот пример идеализируем.

Рис. 20


При равномерном нагреве бесконечного однородного бруска, нежестко прикрепленного к плоскости, в нем возникнут сжимающие напряжения. Как только они достигнут некоторой критической величины, состояние бруска станет неустойчивым, и в каком-то случайном месте появится складка. В окружении этой складки произойдет разгрузка сжимающих напряжений. В это же время, также в случайных местах, будут появляться другие складки. Их зонами разгрузки в скором времени перекроется весь брусок. Строго закономерной структуры в этом случае не возникнет. В случае же неравномерного нагрева бруска так, чтобы фронт нагрева (фронт высоких напряжений) смещался вдоль него, складки будут возникать одна за другой на равных расстояниях.

Другой гипотетический пример. Пусть в литосфере существует протяженный разлом, под которым вдоль него на глубине располагается протяженная зона с породами, насыщенными магмой. Допустим, со временем давление магмы растет, и как только в какой-то точке оно превысит некоторую величину, возникает пробой, магма через разлом прорывается к поверхности — появляется вулкан. В его окружении давление магмы в резервуаре при этом падает — разгружается. Предположим, что «прочность разлома на пробой» по его длине одинакова, а давление магмы в резервуаре в какой-то точке имеет максимум, в стороны же от этой точки вдоль разлома оно плавно снижается. Естественно, что при повсеместном нарастании давления первый вулкан появится в этой точке. В зоне его разгрузки давление магмы упадет, и новый вулкан образоваться здесь уже не сможет. При этом на удалении от первого вулкана (на краях его зоны разгрузки) появятся два новых максимума давления магмы. При росте давления здесь возникнут новые вулканы. В свою очередь, на краю их зоны разгрузки возникнут новые вулканы. В итоге появится упорядоченная структура, в которой элементы (вулканы) будут расположены на расстоянии, равном половине ширины зоны разгрузки.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*