Стивен Вайнберг - Объясняя мир. Истоки современной науки
После изложения теорий движения и притяжения Ньютон в «Математических началах» переходит к разработке некоторых следствий, которые выходят далеко за рамки трех законов Кеплера. Например, в Предложении 14 он объясняет прецессию перигелия орбит планет (для Земли), измеренную аз-Заркали, хотя сам Ньютон не пытается провести количественные вычисления.
В Предложении 19 Ньютон замечает, что все планеты должны быть сплющены у полюсов, поскольку их вращение производит центробежную силу, которая сильнее всего у экватора и уменьшается к полюсам. Например, вращение Земли создает центростремительное ускорение, на экваторе равное 0,034 м/с за секунду. Сравним эту величину с ускорением свободного падения – 9,8 м/с за секунду: центробежная сила, создаваемая вращением Земли, намного слабее силы притяжения, но полностью пренебречь ею нельзя, а Земля действительно имеет почти шаровидную форму, но слегка сплющена у полюсов. Наблюдения в 1740-х гг. в конце концов доказали, что один и тот же маятник раскачивается на экваторе медленнее, чем на более высоких широтах, в точности, как и ожидалось, поскольку на экваторе маятник находится немного дальше от центра Земли, сплющенной у полюсов.
В Предложении 39 Ньютон доказывает, что воздействие силы тяготения на сплющенную у полюсов Землю вызывает прецессию ее оси вращения, ту самую «прецессию равноденствий», которую впервые заметил Гиппарх (у Ньютона был свой особый интерес к этой прецессии: соотнося ее значения с древними наблюдениями звезд, он пытался установить даты предполагаемых исторических событий, например, путешествия Ясона и аргонавтов){268}. В первом издании «Математических начал» Ньютон приводит свои расчеты, которые показали, что доля Солнца в годичной прецессии составляет 6,82° дуги, а воздействие со стороны Луны больше в 6,3 раза, что дает общие точки равноденствия в 50" дуги за год, и это идеально согласуется с годовой прецессией в 50", измеренной к тому времени и близкой к современному значению в 50,375". Это был впечатляющий результат, но позднее Ньютон понял, что найденная им величина прецессии под влиянием Солнца, а значит, и ее вклад в общую прецессию был в 1,6 раза занижен. Во втором издании он скорректировал величину воздействия со стороны Солнца, а также соотношение вкладов Солнца и Луны в общий эффект прецессии, так что их сумма опять же оказалась близкой к 50" и осталась в согласии с наблюдательными данными{269}. Ньютон получил верное качественное объяснение прецессии равноденствий, и его расчет дал ему величину правильного порядка для этого явления, но чтобы добиться необходимого согласия с наблюдениями, ему пришлось прибегнуть ко многим ухищрениям.
Это только один пример того, как Ньютон подгонял свои расчеты, чтобы получать результаты, хорошо согласующиеся с наблюдениями. Наряду с этим примером Р. Вестфол{270} приводит другие, в том числе расчеты Ньютоном скорости звука и его сравнение центростремительного ускорения Луны с ускорением свободного падения у поверхности Земли. Возможно, Ньютон чувствовал, что его настоящие или воображаемые соперники никогда не будут удовлетворены никакими выводами, кроме тех, которые идеально совпадают с наблюдениями.
В Предложении 24 Ньютон излагает свою теорию приливов. Грамм за граммом Луна притягивает океанские воды сильнее, чем твердую Землю, центр которой находится дальше. В то же время Луна притягивает твердую Землю сильнее, чем океанскую воду на противоположной Луне стороне Земли. Таким образом, в океане появляется приливный горб, образующий волну как со стороны, обращенной к Луне, так и с противоположной, где сила притяжения Луны вытягивает Землю из воды. Этим объясняется, почему в некоторых местах высокие приливы отделяются промежутком примерно в 12 часов, а не в 24. Но это явление слишком сложно для теории приливов, которую можно было доказать опытом во времена Ньютона. Он знал, что Солнце, как и Луна, играет роль в образовании приливов. Приливы с максимально высоким уровнем и отливы с минимальным уровнем, известные как сизигийные приливы, возникают в новолуние или полнолуние, то есть когда Солнце, Луна и Земля оказываются на одной линии, взаимно усиливая воздействие силы притяжения. Но самая большая сложность проистекает из того факта, что все гравитационные воздействия в океане тесно связаны с формой континентов и топографией океанского дна, которые Ньютон не мог принимать в расчет.
Подобная ситуация часто возникала в истории физики. Теория тяготения Ньютона успешно объяснила простые явления, такие как движение планет, но не смогла дать количественно оцениваемых характеристик для более сложных явлений, например, приливов. Сегодня мы оказались в той же ситуации с теорией сильного поля, которое сдерживает кварки в протонах и нейтронах внутри атомных ядер, теорией, которая известна как квантовая хромодинамика. Она вполне успешно объясняет определенные процессы при высоких энергиях, такие как образование различных сильно взаимодействующих частиц при аннигиляции быстрых электронов и их античастиц. Это убеждает нас, что теория правильна. Но мы не можем использовать ее, чтобы высчитать точные значения, которые хотели бы объяснить, например, массы протонов и нейтронов, потому что расчеты слишком сложны. Здесь, как и в ситуации с ньютоновской теорией приливов, лучше всего набраться терпения. Физические теории проходят проверку, когда они дают нам возможность надежно рассчитывать достаточное количество простых параметров, даже если мы не можем рассчитать все, что нам захочется.
Книга III «Математических начал» представляет расчеты того, что уже было измерено, и дает прогнозы относительно еще не измеренных параметров, но даже в последнем, третьем издании «Математических начал» Ньютон не смог указать на свои прогнозы, которые были бы подтверждены за сорок лет со времени выхода первого издания. Тем не менее, подводя итоги, можно сказать, что фактическая доказанность теорий движения и притяжения Ньютона перевешивала все. Ньютону не было нужды следовать примеру Аристотеля и объяснять, почему притяжение существует, и он не пытался это сделать. В своем «Общем поучении» Ньютон заключает:
«До сих пор я изъяснил небесные явления и приливы наших морей на основании силы тяготения, но я не указывал причины самого тяготения. Эта сила происходит от некоторой причины, которая проникает до центра Солнца и планет без уменьшения своей способности и которая действует не пропорционально величине поверхности частиц, на которые она действует (как это обыкновенно имеет место для механических причин), но пропорционально количеству твердого вещества, причем ее действие распространяется повсюду на огромные расстояния, убывая пропорционально квадратам расстояний… Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю»{271}.
Книга Ньютона начинается с подобающей оды авторства Галлея. Вот ее последние строки:
Вы, кто питаться при жизни божественным нектаром рады,
Ньютона славьте, ковчег нам открывшего истины скрытой,
Ньютона, Музам Парнаса любезного, в чьей груди чистой
Феб пребывает, сознанье ему божеством наполняя.
Смертному больше, чем это, к богам не дано приближаться.
«Начала» описывают законы движения и принципы закона всемирного тяготения, но это не исчерпывает их важность. Ньютон дал будущей науке модель того, какой должна быть физическая теория: набор простых математических принципов, которые точно удовлетворяют широкому спектру различных явлений. Хотя Ньютон точно знал, что притяжение является не только физической силой, именно поэтому его теория была всеобщей – каждая частица во Вселенной притягивает любую другую частицу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. «Начала» не только вывели законы движения планет Кеплера как точное решение упрощенной задачи – движения точечного источника массы в ответ на притяжение единственной массивной сферы, – они объяснили (хотя в некоторых случаях только качественно) огромное количество других явлений: прецессию равноденствий, прецессию перигелия, траектории движения комет, приливы и отливы, падение яблок{272}. По сравнению с этим все предыдущие физические теории не были столь всеобъемлющими.
После публикации «Начал» в 1686–1687 гг. Ньютон стал знаменитым. Его выбрали членом парламента от Кембриджского университета в 1689 г. и – еще раз – в 1701 г. В 1694 г. он стал смотрителем Монетного двора, где провел реформу Монетной системы Англии. При этом Ньютон сохранил свою должность Лукасовского профессора математики. Когда царь Петр Великий приезжал в Англию в 1698 г., он собирался посетить Монетный двор, чтобы встретиться с Ньютоном, но я не нашел никаких свидетельств того, состоялась ли эта встреча. С 1699 г. Ньютон занял должность управляющего Монетным двором, которая гораздо лучше оплачивалась. Он разбогател и отказался от своего профессорства. В 1703 г., после смерти его старого врага Гука, Ньютон стал президентом Лондонского королевского общества. В 1705 г. Ньютон был возведен в рыцарское достоинство. Когда в 1727 г. он умер от мочекаменной болезни, его удостоили государственных похорон[22], несмотря на то что он отказался принять Святые Дары англиканской церкви. Вольтер писал, что Ньютон «был погребен, как король, облагодетельствовавший своих подданных»{273}.