KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Александр Петров - Гравитация От хрустальных сфер до кротовых нор

Александр Петров - Гравитация От хрустальных сфер до кротовых нор

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Петров, "Гравитация От хрустальных сфер до кротовых нор" бесплатно, без регистрации.
Перейти на страницу:

Лоренц–ннвариантность. Мы уже обсуждали тот факт, что ОТО как бы «выросла» из специальной теории относительности — механики высоких скоростей, сравнимых со скоростью света. Напомним, что в СТО все инерциальные системы отсчёта, движущиеся относительно друг друга равномерно и прямолинейно, эквивалентны. Важно вспомнить об измерениях времени в СТО. В каждой инерциальной системе отсчёта часы идут в своём собственном темпе, отличном от темпа часов других систем, если их сравнивать. Однако нельзя выбрать ни «лучший», ни «худший» темп, если часы конструктивно идентичны. То есть собственное время каждой инерциальной системы равноправно в отношении других. Это означает, что в СТО нет выделенного течения времени.

Мы также говорили, что на геометрическом языке инвариантность в СТО при переходе от одной инерциальной системы отсчёта к другой эквивалентна инвариантности относительно лоренцевых вращений во всем плоском пространстве–времени. В ОТО из‑за «включения» гравитации и, соответственно, искривления пространства-времени лоренц–инвариантность во всем пространстве–времени уже невозможна. Тем не менее, ОТО остаётся лоренц–инвариантной локально, то есть в малой окрестности каждого наблюдателя. Эта инвариантность является одним из принципов, лежащих в основе ОТО, и связана с принципом соответствия ОТО и СТО.

Хронометрическая теория. В ряде модификаций ОТО нарушена как раз локальная лоренц–инвариантность. Среди них и теория Хоржавы. В последнее время особой популярностью пользуется одна из её реализаций, так называемая «жизнеспособная» («healthy») не проективная версия, разрабатываемая американскими физиками Диего Власом и Ориолом Пуйоласом и нашим соотечественником Сергеем Сибиряковым. Эффекты, обсуждаемые ниже, в основном относятся именно к этой модификации ОТО.

Итак, чем же теория Хоржавы отличается от ОТО? В дополнение ко всем обычным полям ОТО добавляют скалярное поле φ, но не обычным образом. Направление его изменения в пространстве–времени определяет специально выделенное направление времени. Именно поэтому скалярное поле называют полем хронона. Тогда поверхности постоянных значений скалярного поля — это поверхности постоянного времени, или «одновременности». В уравнения скалярное поле входит только через производные, поэтому не стоит опасаться бесконечных значений поля хронона. Существенным является только его изменение, а не значения. Поскольку в пространстве- времени есть выделенное направление, то существуют выделенные системы отсчёта. Это не свойственно ни СТО, ни ОТО, но свойственно векторно–тензорным теориям. Для наглядности приведём простейший «игрушечный» пример. Одно из решений новой теории — это плоское пространство–время (такое как в СТО) плюс поле хронона, которое оказывается просто временем, φ = t. В СТО мы можем перейти с помощью лоренцевых преобразований из одной координатной системы х, t в другую х', t', где время течёт по–другому, В новой теории — не можем, поскольку значение скалярного поля при координатных преобразованиях не меняются, а это есть время. Таким образом, здесь, в отличие от СТО, существуют часы, которые отсчитывают выделенное время.

Поскольку в ОТО гравитационным полем является поле метрики пространства–времени, то ясно, почему новую теорию называют хронометрической. Допустимые ограничения на параметры хронометрической теории дают возможность избежать расходимости при квантовании. Ещё раз повторим: это и было главной целью её построения. Но это теоретический успех, а проверить квантовые эффекты такого уровня сейчас вряд ли возможно.

Однако новая теория должна измениться и в классических (не квантовых) проявлениях. А это даёт возможность доказать или опровергнуть её право на существование. Далее мы покажем, в каких классических явлениях и насколько хронометрическая теория отличается от ОТО, можно ли выявить в наблюдениях эффекты новой теории, проиллюстрируем разницу для некоторых теоретических моделей. Для этого обсудим наиболее яркие, на наш взгляд, примеры.

Гравитационно–волновое излучение. Вспомним, что гравитационная волна в ОТО — поперечная, тензорная, имеет две поляризации (см. рис. 10.2) и распространяется со скоростью света. Гравитационные волны в теории Хоржавы также существуют. Однако помимо двух уже упомянутых тензорных поляризаций имеет место скалярная степень свободы. Это означает, что под действием такой волны к движению пробных частиц добавятся продольные (в направлении распространения волны) смещения. Важно то, что тензорная и скалярная составляющие имеют разные скорости распространения, Кроме того, обе скорости, имея зависимость от параметров модели Хоржавы, должны превышать (!) скорость света, хотя и незначительно. Эти отличия от ОТО интересны, но к сожалению пока только теоретически. До сих пор нет хотя бы непосредственного детектирования гравитационных волн, поэтому фиксация отмеченных различий представляется делом отдалённого будущего.

Тем не менее существует косвенное подтверждение существования гравитационного излучения. Это наблюдения за двойными пульсарами, уменьшение размеров орбит которых свидетельствует о потере энергии на гравитационно–волновое излучение. Этот эффект находится в соответствии с ОТО с относительной точностью 10–2, о чем мы уже говорили. Но предсказания ОТО и теории Хоржавы различны. Поэтому если последняя жизнеспособна, то есть шанс, что уже дальнейшее увеличение точности выявит эти различия и уточнит параметры новой теории.

Теперь для хронометрической теории рассмотрим взаимодействие гравитационного поля с веществом. Обсудим только первое (линейное) приближение, которое может быть доступно для наблюдений. В этом порядке эффекты, связанные с нарушением лоренц–инвариантности, подавлены в силу различных причин, но поле хронона присутствует, оно включено лоренц–инвариантным образом в так называемую эффективную метрику. То есть метрика ОТО модифицируется, и материя распространяется не в исходном пространстве–времени, а в некотором эффективном пространстве–времени, причём универсальным образом. Возможно в будущем именно это взаимодействие позволит обнаружить классические явления, представленные хронометрической теорией.

В приближении слабых полей и малых скоростей пределом гравитационной теории должна стать гравитация Ньютона. В последней взаимодействие двух частиц представлено известным законом Ньютона, где сила пропорциональна массам, гравитационной постоянной, обратно пропорциональна квадрату расстояния, но не зависит от скоростей этих частиц. Присутствие поля хронона изменяет и дополняет и этот закон следующим образом. Незначительно меняется гравитационная постоянная, теперь её называют эффективной, и появляется зависимость от скоростей. Возможность детектирования этих эффектов определяется константами связи хронометрической теории.

Влияние поля хронона проявляется также в том, что некоторые взаимодействия могут распространяться мгновенно (!), т. е. с бесконечной скоростью. Как сделан этот вывод? Обычно уравнения для возмущений содержат волновой оператор, который состоит из двух частей: пространственной и временной. Величина, обратная коэффициенту при второй части — это квадрат скорости распространения возмущений. Полное отсутствие второй части означает, что эта скорость бесконечна. Именно такую структуру имеет часть уравнений теории Хоржавы. Здесь уместно провести аналогию с теорией Ньютона. В ней точно так же, как и в хронометрической теории, выделено течение времени («абсолютное время») и гравитационное взаимодействие распространяется мгновенно.

Как представить мгновенное распространение? Вообразите поверхность постоянного времени, тогда сигнал, распространяясь на ней (то есть без изменения времени), мгновенно проходит любые расстояния. Это недопустимо в таких релятивистских теориях как СТО или ОТО. Обратимся к диаграмме на рис. 12.1. Рассмотрим три точки в пространстве: А, В и С. В момент t = 0 эти точки соответствуют событиям А0, В0, С0, которые, в рамках СТО причинно не связаны. Только в момент t1 событие А0 становится причинно связанным с событием В1 в точке В, а в момент t2 и с событием С2 в точке С. Как и должно быть

Рис. 12.1. Причинно связанные события в СТО и теории Хоржавы

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*