KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Тибо Дамур, "Мир по Эйнштейну. От теории относительности до теории струн" бесплатно, без регистрации.
Перейти на страницу:

54

См. ссылки в комментариях к первой главе.

55

Для более подробной информации о различиях подходов Пуанкаре и Эйнштейна, см. книги Авраама Паиса и Мишеля Пати (Abraham Pais, Michel Paty) в Избранной библиографии, а также статью Оливье Дарриголя «Должны ли мы пересмотреть историю теории относительности?» (d’Olivier Darrigol, «Faut-il réviser l’histoire de la relativité?», Lettre de l’Académie des sciences N 14, hiver 2004), доступна на сайте www.academiesciences.fr. См. также статью Тибо Дамура «Пуанкаре, теория относительности, бильярд и симметрия» (Thibault Damour, Poincaré, Relativity, Billiards and Symmetry), доступную в электронном научном архиве hep-th/0501168.

56

Я благодарю Дэвида Гросса за интересную дискуссию по этому вопросу.

57

Здесь мы разделяем взгляд Мишеля Пати в «Философии Эйнштейна» (Michel Paty, Einstein philosophe), интерпретирующего эту дискуссию, как относящуюся скорее к релятивистской механике. Эта интерпретация, однако, не является общепринятой среди историков науки. Питер Галисон считает, что она относится к квантовой механике: см.: разд. 1 «История» // «Квантовая структура пространства и времени», Труды 23-го Сольвеевского конгресса по физике под ред. Дэвида Гросса, Марка Анно и Александра Севрина (The Quantum Structure of Space and Time, Proceedings of the 23d Solvay Conference on Physics, édité par David Gross, Marc Henneaux et Alexander Sevrin, World Scientific, Singapore, 2007), в частности с. 8, 9 и 19. В то же время Оливье Дариголь (из личного общения) считает, что она, скорее, относится к статистической механике.

58

«Время и пространство» – лекция, прочитанная 4 мая 1912 г. в Лондонском университете и опубликованная (среди прочего) в книге Пуанкаре «Последние мысли» (H. Poincaré, Dernières pensées, Paris, Flammarion, 1913).

59

Кроме того, кажется, что Пуанкаре никогда не ссылался на работу Эйнштейна по теории относительности. И, возможно, даже не знал о ее существовании вплоть до 1908 г. Он узнал о ней лишь в 1909 г. (скорее всего, во время лекций, которые он читал в Геттингене, и в любом случае из письма Миттаг-Леффлера).

60

Прекрасный анализ научной философии Пуанкаре (по поводу полемики относительно движения Земли) см. в статье Жана Maувина «Крутится ли Земля?» (Jean Mawhin, «La terre tourne-t-elle?», Ciel et Terre, vol. 111, p. 3–10, 1995). Пока мы находимся в ожидании долгожданной биографической книги Жана Maувина о Пуанкаре.

61

Уточним, что энергию E, «содержащуюся в массе» m, следует рассматривать в системе отсчета, в которой тело покоится.

62

Поскольку некоторые поклонники Пуанкаре доходят до абсурда, утверждая, что Пуанкаре мог бы получить в общем виде равенство E = mc² раньше Эйнштейна, процитируем в качестве примера внутреннего неприятия утверждения об эквивалентности массы и энергии фразу, написанную Пуанкаре в 1908 г. (через три года после выхода работы Эйнштейна, вероятно, еще не известной Пуанкаре) в статье под названием «Динамика электрона». Пуанкаре говорит об отдаче, которую испытывает материальное тело, испускающее электромагнитное излучение в некотором предпочтительном направлении, противопоставляя ее отдаче орудия при выстреле: «Орудие имеет отдачу, потому что снаряд, на который оно действует, производит на него обратное действие. Но в случае излучения это не так. То, что ушло [т. е. электромагнитное излучение] не является материальным снарядом: это суть энергия, а энергия не обладает массой…»

63

Мы говорим здесь о предсказании, сделанном в окончательной версии общей теории относительности Эйнштейна, которая появилась в ноябре 1915 г. Уже в 1907 г. Эйнштейн понял, что в любом обобщении теории относительности, допускающем гравитацию, должно быть гравитационное влияние на распространение света. В 1911 г. он получил предварительный результат, согласно которому Солнце должно отклонять любые лучи, проходящие вблизи его контура, на 0,875 угловой секунды. К счастью для него, Первая мировая война сделала невозможной проверку этого неполного прогноза во время затмения 21 августа 1914 г. (Jean Eisenstaedt, Einstein et la relativité générale, Paris, CNRS Éditions, 2002).

64

На самом деле Эйнштейн отказался от немецкого гражданства, когда ему было 16 лет, и принял швейцарское гражданство. Тем не менее он был членом Прусской академии наук, и Германия считает, что это снова дало ему немецкое гражданство. Позже Эйнштейн принял также американское гражданство, но сохранил швейцарское гражданство на всю оставшуюся жизнь.

65

Эксперимент с падающим телом, который якобы был проведен на Пизанской башне, является мифом, хотя и хорошо отражает суть инновации Галилея.

66

Для русского издания см., например: Галилео Галилей. Диалог о двух главнейших системах мира – птолемеевой и коперниковой. – М.: ГИТТЛ, 1948.

67

Приставка «гипер» добавляется к слову поверхность для подчеркивания, что соответствующая совокупность точек обладает размерностью, меньшей на одно измерение, чем «окружающее пространство», в которое она вложена. Так как данная поверхность вложена в четырехмерное пространство-время, это означает, что она имеет три внутренних измерения (в то время как в обычном трехмерном пространстве поверхность имеет только два измерения). Для обозначения того, что мы называем здесь песочными часами, в математике используется термин «гиперболоид».

68

Здесь подразумевается то, что в математике называется обобщенным «эллипсоидом».

69

Используя точный математический термин, речь идет об обобщенном «гиперболоиде».

70

На самом деле, впоследствии было выяснено, что «принцип общей теории относительности» не имеет физического смысла обобщения «принципа специальной теории относительности». Принцип специальной теории относительности – это принцип симметрии структуры пространства-времени, который гласит, что физика для определенного класса систем отсчета одна и та же, и, таким образом, определенные «соответствующие» явления происходят одинаковым образом в разных системах отсчета (связанных «активными» преобразованиями). В то же время принцип общей теории относительности является принципом безразличия: явления не разворачиваются (в общем случае) одинаковым образом в различных системах координат, но ни одна из (глобальных) систем координат не имеет привилегированного статуса по отношению к другим.

71

В свете того, что уже было сказано, теорема Пифагора – Эйнштейна в деформированном пространстве-времени, «заданном» четырьмя произвольными координатами x0, x1, x2, x3, утверждает, что квадрат интервала между двумя бесконечно близкими друг к другу точками (с координатами x0, x1, x2, x3 и x0 + dx0, x1 + dx1, x2 + dx2, x3 + dx3) равен сумме слагаемых, пропорциональных квадратам и двойным произведениям (бесконечно малых) координатных дифференциалов: dx0, dx1, dx2, dx3. В этой сумме содержатся десять слагаемых, поскольку имеются четыре квадрата dx, dx, dx, dx3² и шесть двойных произведений 2dx0dx1, 2dx0dx2, 2dx0dx3, 2dx1dx2, 2dx1dx3 и 2dx2dx3. Коэффициенты при четырех квадратах обозначаются, соответственно, как g00, g11, g22 и g33, в то время как коэффициенты при двойных произведениях обозначены через g01, g02, g03, g12, g13 и g23. Если мы назовем ds² бесконечно малым квадратом интервала между двумя рассматриваемыми точками, то можем записать теорему Пифагора – Эйнштейна в виде ds² = ∑νdxµdxν, где каждый индекс µ или ν принимает четыре значения 0, 1, 2 и 3, а знак ∑ указывает на то, что суммирование производится независимо по двум индексам µ и ν. Эйнштейн упростил эти обозначения (введенные Риманом), заметив, что нет необходимости писать символ ∑, поскольку достаточно лишь неявно подразумевать суммирование по повторяющимся индексам (в данном случае µ и ν). Эйнштейн всегда писал индексы µ и ν как нижние индексы у координат x. Сегодня они пишутся как верхние индексы (хотя в результате этого их иногда можно спутать с показателями). Таким образом, в конечном итоге мы пишем: ds² = ν (xλ) dxµdxν, где отмечено, что 10 метрических коэффициентов ν являются функциями четырех координат xλ.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*