KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Стивен Вайнберг - Объясняя мир. Истоки современной науки

Стивен Вайнберг - Объясняя мир. Истоки современной науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Вайнберг, "Объясняя мир. Истоки современной науки" бесплатно, без регистрации.
Перейти на страницу:

В 1675 г. в Лондоне Ньютон прочитал лекцию по своей теории света. Он предполагал, что свет, как и любое вещество, состоит из множества маленьких частиц, что противоречило точке зрения, которой в то время придерживались Гук и Гюйгенс (о том, что свет – это волна). Это был один из тех случаев, когда научное чутье Ньютона подводило его. Существовало множество наблюдений, доказывающих волновую природу света. Действительно, в современной квантовой механике свет описывается как совокупность не имеющих массы частиц, которые называются фотонами, но в свете, с которым мы сталкиваемся в повседневной жизни, количество фотонов огромно, и вследствие этого свет ведет себя как волна.

В своей работе «Трактат о свете», вышедшей в 1678 г., Гюйгенс описал свет как волну возмущений в среде, эфире, состоящем из огромного количества мельчайших материальных частиц, располагающихся в тесном соседстве. Как и волна в океане в области больших глубин не перемещает воду вдоль поверхности океана, а лишь вызывает ее вертикальные колебания, так и свет, по теории Гюйгенса, – это волна возмущений среди частиц эфира, которая движется вдоль луча света, но сами частицы при этом вдоль луча не перемещаются. Каждая затронутая частица становится новым источником возмущения, что создает общую амплитуду волны. Конечно, после работ Джеймса Клерка Максвелла в XIX в. мы знаем (даже если отвлечься от квантовых эффектов), что Гюйгенс был прав только наполовину: свет – это действительно волна, но волна возмущений в электрическом и магнитном поле, а не волна возмущений материальных частиц.

Используя волновую теорию света, Гюйгенс сумел вывести, что свет в однородной среде (или в пустоте) ведет себя так, как будто двигается по прямым линиям, то есть волновое возмущение частиц как будто слагается из колебаний частиц только вдоль этих линий. Он по-новому объяснил правило равенства углов падения и отражения и закон преломления Снеллиуса, не используя априорное предположение Ферма о том, что свет совершает свой путь за наикратчайшее время (см. техническое замечание 30). По теории преломления Гюйгенса луч света преломляется, проходя под непрямым углом границу между двумя средами, скорость света в которых отличается, примерно так же, как и отряд солдат изменяет направление своего движения вслед за передовым флангом строя, переходя с хорошей дороги на болотистую местность, где его скорость снижается.

Немного отклоняясь от темы, скажу, что по волновой теории Гюйгенса, в отличие от Декарта, свет движется с конечной скоростью. Гюйгенс утверждал, что эффекты, вызванные этой конечной скоростью, просто трудно заметить, потому что свет движется очень быстро. Если бы, к примеру, свету был необходим час, чтобы преодолеть расстояние от Земли до Луны, то во время лунного затмения Луна располагалась бы не непосредственно напротив Солнца, а отставала бы от него примерно на 33°. Поскольку такого отставания мы не наблюдаем, Гюйгенс сделал вывод, что скорость света должна быть, по крайней мере, в 100 000 раз быстрее скорости звука. Это предположение недалеко от истины – на самом деле соотношение этих скоростей составляет примерно миллион раз.

Также Гюйгенс описал недавние наблюдения спутников Юпитера датским астрономом Оле Рёмером. Эти наблюдения показывали, что период обращения Ио кажется короче, когда Земля и Юпитер приближаются друг к другу, и длиннее, когда они расходятся (на Ио обратили особое внимание, поскольку у него самый короткий орбитальный период из всех галилеевских спутников Юпитера – всего 1,77 суток). Гюйгенс интерпретировал это как явление, которое позже стало называться эффектом Доплера: когда Юпитер и Земля сближаются или расходятся, расстояние между ними при каждом последующем окончании периода обращения Ио соответственно уменьшается или увеличивается. Поэтому, если свет движется с конечной скоростью, временной интервал между наблюдениями каждого полного периода обращения Ио будет, соответственно, меньше или больше, чем если бы Земля и Юпитер находились в состоянии покоя. Точнее говоря, долевой сдвиг в наблюдаемом периоде обращения Ио должен быть равен отношению относительной лучевой скорости Земли и Юпитера к скорости света. При этом относительная лучевая скорость может принимать как положительные, так и отрицательные значения в зависимости от того, отдаляются Земля и Юпитер или сближаются (см. техническое замечание 31). Измерив видимые изменения периода Ио и зная относительную скорость Земли и Юпитера, можно высчитать скорость света. Поскольку Земля движется быстрее Юпитера, именно вклад Земли в относительную скорость наибольший. В те времена размеры Солнечной системы были известны не очень хорошо, так же как и численное значение относительной скорости расхождения Земли и Юпитера, но, опираясь на данные Рёмера, Гюйгенс сумел высчитать, что свету требуется 11 минут, чтобы преодолеть расстояние, равное радиусу земной орбиты. Этот результат не зависел от конкретного значения радиуса. Иначе говоря, поскольку астрономическая единица определяется именно как радиус земной орбиты, то Гюйгенс определил, что свет проходит астрономическую единицу за 11 минут. Современное значение скорости света составляет одну астрономическую единицу за 8,32 минуты.

И Гюйгенсу, и Ньютону были доступны экспериментальные свидетельства того, что свет имеет волновую природу: открытие дифракции иезуитом из Болоньи Франческо Мария Гримальди, учеником Риччоли, опубликованное после его смерти в 1665 г. Гримальди обнаружил, что тень от тонкого прутика в солнечном свете выглядит не идеально четкой, но окаймленной тонкими полосками. Это явление связано с тем фактом, что длина волны света не является ничтожно малой по сравнению с толщиной прутика, но Ньютон считал, что это проявление некоторого рода рефракции, возникающей на поверхности прутика. Вопрос о корпускулярной или волновой природе света перешел в разряд решенных для большинства физиков к началу XIX в., когда Томас Юнг открыл интерференцию – узор, получающийся из-за усиления или угасания световых волн, которые проходят в одну точку разными путями. Как уже было упомянуто, в XX в. стало понятно, что обе эти теории не являются взаимоисключающими. В 1905 г. Эйнштейн понял, что, хотя свет в большинстве случаев ведет себя как волна, энергия в нем передается в маленьких пакетах, которые позже получили названия фотонов. Каждый из них обладает крошечной энергией и импульсом, пропорциональными частоте света.

Ньютон в конце концов представил свою работу по свету в книге «Оптика», написанной на английском в начале 1690-х гг. Она была опубликована в 1704 г., после того, как Ньютон уже стал знаменит.

Ньютон был не только великим физиком, но и выдающимся математиком. Начиная с 1664 г. он изучал работы по математике, в том числе «Начала» Евклида и «Геометрию» Декарта. Вскоре Ньютон смог разрабатывать собственные решения различных задач, многие из которых были связаны с бесконечностью. Например, он рассматривал бесконечные ряды типа x – x²/2 + x³/3 – x4/4+… и показал, что сумма такого ряда сходится в логарифм{251} 1 + х.

В 1665 г. Ньютон начал размышлять о бесконечно малых величинах. Он задумался над задачей: предположим, что нам известно расстояние D (t), пройденное за время t. Каким образом можно найти скорость в любой момент времени? Ньютон рассуждал, что при неравномерном движении скорость в любой момент времени составляет отношение пройденного расстояния к затраченному времени в любой бесконечно малый интервал времени. Введя символ о для обозначения бесконечно малого интервала времени, он определил скорость за время t как отношение к o расстояния, пройденного в интервал времени между t и t + o, то есть скорость равна [D (t + o) – D (t)]/o. Например, если D (t) = t³, тогда D (t + o) = t³ + 3t²o + 3to² + o³. Поскольку о стремится к нулю, мы можем не учитывать слагаемые, пропорциональные и , и принять равенство D (t + o) = t³ + 3t²o. Таким образом, D (t + o) – D (t) = 3t²o и скорость равна просто 3t². Ньютон назвал это флюксией D (t), но позже это стало называться производной, одним из основных инструментов современного дифференциального исчисления{252}.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*