Стивен Вайнберг - Объясняя мир. Истоки современной науки
Неточность некоторых результатов Декарта может быть связана с ограниченностью математических средств в то время. Я не знаю, была ли у него возможность пользоваться таблицей синусов, но у него точно не было ничего, хотя бы отдаленно напоминающего современный микрокалькулятор. Тем не менее эти результаты выглядели бы лучше, если бы Декарт округлил их до ближайшего целого градуса, а не до 10 минут угла.
Как заметил Декарт, угол φ близок к 40° для достаточно широкого диапазона прицельных расстояний b. Далее он повторил расчеты для восемнадцати еще более близко расположенных лучей, значения b для которых отличались от 80 до 100 % радиуса капли, при этом угол φ был равен примерно 40°. Декарт выяснил, что для четырнадцати из этих восемнадцати лучей угол φ находился в промежутке от 40° до максимальной величины 41° 30´. Таким образом, эти теоретические расчеты подтвердили его экспериментальные данные, упомянутые ранее, где угол наиболее яркого луча был округленно равен 42°.
В техническом замечании 29 приводится современный вариант расчетов Декарта. Вместо того чтобы высчитывать численное значение угла φ между входящим и исходящим лучом для каждого луча в совокупности лучей, как делал Декарт, выводится простая формула, по которой рассчитывается φ для любого угла, при любом прицельном расстоянии b и при любом значении n отношения между скоростью света в воздухе и скоростью света в воде. Затем эта формула используется для определения значения φ, при котором выходящие из капли лучи наиболее интенсивны{241}. Для n, равного 4/3, оптимальное значение φ оказывается 42°, при котором преломленный свет собирается, как это и определил Декарт. Декарт даже рассчитал соответствующий угол для вторичной радуги, которая производится светом, дважды отражающимся внутри капли до того, как покидает ее.
Декарт видел связь между разделением цветов, характерным для радуги, и цветами, получающимися при преломлении света через призму, но он не смог рассчитать количественные показатели этого явления, потому что не знал, что белый солнечный свет состоит из всех цветов и что показатель преломления света немного меняется в зависимости от его цвета. В действительности, тогда как Декарт брал показатель преломления для воды, равный 4/3 = 1,3333…, на самом деле для типичной длины волны красного цвета он равен скорее 1,330, а для синего – 1,343. Используя общую формулу, описанную в замечании 29, можно найти максимальное значение для угла φ между углом падения и преломления, которое будет равно 42,8° для красного цвета и 40,7° для синего. Именно поэтому Декарт и видел ярко-красный цвет, когда смотрел на сосуд с водой под углом в 42° к направлению солнечных лучей. Это значение угла φ немного выше максимального значения 40,7° для синего цвета, поэтому Декарт не мог увидеть лучей из синей части спектра, но немного ниже максимального значения φ 42,8° для красного цвета, поэтому и мог получиться достаточно яркий оттенок красного.
Работа Декарта по оптике приближается к методу современной физики. Декарт сделал ни на чем не основанное предположение о том, что свет преодолевает границу между двумя средами так же, как теннисный мячик, прорывающий тонкий экран, и использовал его, чтобы вывести соотношение между углами падения и преломления, которое (при правильном выборе показателя преломления n) согласуется с наблюдениями. Далее, используя сосуд, наполненный водой, в качестве модели капли дождя, Декарт провел наблюдения, подтвердившие возможное происхождение радуги. Затем он показал математически, что эти наблюдения следуют из его закона преломления. Он не понимал, почему у радуги возникают разные цвета, поэтому обошел этот вопрос и опубликовал то, что понимал. Это как раз то самое, что делают физики сегодня. Но если отвлечься от приложения математических расчетов к физической задаче, то какое отношение это исследование имеет к «Рассуждению о методе» Декарта? Я не вижу, чтобы он выполнял свои собственные предписания «четко следовать пути рассуждений и искать истину в науке».
Я должен добавить, что в «Первоначалах философии» Декарт предлагал значительное качественное улучшение понятия «импетус Буридана»{242}. Он доказывал, что «любое движение само по себе происходит вдоль прямых линий», поэтому (в противовес и Аристотелю, и Галилею) требуется сила, которая заставляет небесные тела двигаться по искривленным орбитам. Но Декарт не сделал никакой попытки рассчитать эту силу. Как мы увидим в главе 14, Гюйгенсу удалось найти формулу для силы, которая требуется, чтобы тело двигалось с заданной скоростью по кругу заданного радиуса, а Ньютон объяснил, что эта сила является силой тяготения.
В 1649 г. Декарт поехал в Стокгольм, чтобы стать учителем правящей королевы Кристины. Возможно, из-за холодной шведской погоды Декарт в следующем году, как и Бэкон, умер от пневмонии. Четырнадцать лет спустя его работы были добавлены к книгам Коперника и Галилея в список литературы, запрещенной Римской католической церковью.
Сочинения Декарта по научному методу всегда привлекали внимание философов, но я не думаю, что они оказали большое влияние на практику научного исследования (и даже, как уже говорилось выше, на самую успешную научную работу самого Декарта). Его работы имели один негативный эффект – физика Ньютона была принята во Франции несколько позже. Алгоритм выведения научных принципов из чистых размышлений, описанный в «Рассуждении о методе», никогда не работал и не мог работать. Гюйгенс в молодости считал себя последователем Декарта, но позже пришел к пониманию того, что научные принципы – это только гипотезы, которые должны быть проверены сравнением их следствий с наблюдениями{243}.
С другой стороны, работа Декарта по оптике показывает, что он сам понимал, что научные гипотезы такого рода иногда необходимы. Лоренс Лаудан нашел подтверждение этого понимания в беседах Декарта по химии в «Первоначалах философии»{244}. Поэтому возникает вопрос, был ли в действительности хоть один ученый, который перенял от Декарта практику проверять придуманные гипотезы экспериментально, как думал Лаудан о Бойле. Я лично думаю, что эта практика была широко распространена и до Декарта. Как еще можно описать то, что делал Галилей, используя гипотезу о том, что падающие тела ускоряются равномерно, чтобы вывести из нее следствие о том, что брошенные тела летят по параболической траектории, а затем проверить ее экспериментально?
Согласно биографии Декарта, написанной Ричардом Уотсоном, «без картезианского метода разложения материальных вещей на первичные элементы мы никогда бы не изобрели атомную бомбу. Рост современной науки в семнадцатом веке, ее расцвет в восемнадцатом, промышленная революция в девятнадцатом, ваш персональный компьютер в двадцатом и расшифровка работы мозга в двадцать первом – все это картезианство»{245}. Декарт, безусловно, внес огромный вклад в развитие математики, но утверждать, что его сочинения по научному методу привели ко всем этим замечательным достижениям, абсурдно.
Декарт и Бэкон – это только два философа среди очень многих, которые на протяжении веков пытались определить правила научного поиска. Это никогда не срабатывает. Мы узнали, как вести научные исследования, не придумывая правила, как заниматься наукой, а исходя из опыта занятий наукой, руководствуясь ощущением удовлетворения, которое мы испытываем, когда наши методы позволяют нам что-то объяснить.
14. Обобщения Ньютона
С Ньютоном мы подходим к кульминации научной революции. Но что за странный тип сыграл такую важную роль в истории науки! Ньютон никогда не покидал маленький район Англии, в который входили Лондон, Кембридж и его родная деревня в Линкольншире. Он даже никогда не видел моря, приливы и отливы которого так его интересовали. Достигнув средних лет, Ньютон не имел близких отношений ни с одной женщиной, и даже с матерью его отношения были прохладными{246}. Его очень волновали вопросы, не имеющие никакого отношения к науке, в том числе хронология Книги пророка Даниила. Каталог рукописей Ньютона, выставленный на продажу на аукционе «Сотби» в 1936 г., насчитывал 650 000 слов в текстах по алхимии и 1,3 млн слов в текстах по религии. С теми, кто казался ему соперником, Ньютон мог быть коварным и отвратительным. Тем не менее этот человек связал воедино физику, астрономию и математику, что не удавалось сделать философам со времен Платона.
Некоторые авторы настаивают, что Ньютон не был современным ученым. Среди этих заявлений хорошо известно высказывание Джона Мейнарда Кейнса, купившего на аукционе «Сотби» в 1936 г. некоторые бумаги Ньютона: «Ньютон не был первым человеком века разума. Он был последним из волшебников, вавилонян и шумеров, последним из великих умов, смотревших на внешний и внутренний мир теми же глазами, как и те, кто начал создавать наше научное наследие чуть ли не 10 000 лет тому назад»{247}. Но Ньютон не был просто талантливым пережитком магического прошлого. Не будучи ни волшебником, ни в полном смысле слова современным ученым, он пересек границу между натурфилософией прошлого и тем, что стало современной наукой. Достижения Ньютона, несмотря на все его недостатки, обеспечили парадигму, которой в дальнейшем следовали все ученые и благодаря которой наука стала современной.