KnigaRead.com/

Коллектив авторов - Океанография и морской лед

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Коллектив авторов, "Океанография и морской лед" бесплатно, без регистрации.
Перейти на страницу:

Прибор устанавливается в монтируемой к корпусу раме. Отличием в креплении RCM 9IW в такелаже является то, что прибор вывешивается на конце синтетического троса, а утяжеляющий груз весом 15 кг удален вниз от прибора на синтетическом тросе на 5 м. Запас времени по питанию (батареи типа 3614 AANDERAA) при измерении через 10 минут равен 92 суткам.

После окончания работы прибор извлекается из прочного корпуса, выключается, снимается устройство накопления данных DSU 2990 (либо DSU 2990E). Оно подключается к устройству считывания данных DSU Reader 2995, подключенному к персональному компьютеру. С помощью штатной программы «Data Reading Program DRP 5059» производится синхронизация часов прибора с компьютером, считывание данных, они ассоциируются с измеряемыми переменными. Далее возможно сохранение данных в виде ASCII – кодов, расчет статистических оценок рядов данных.

Измеритель течения SEAGUARD RCM IW во многом принципиально схож с RCM 9IW. Отличием является использование датчика скорости течения типа Zpulse (на RCM 9IW установлен датчик типа DCS 3820). В данной модификации (рис. 1З) также, как и RCM 9IW, имеются аналогичные датчики температуры и электропроводности, давления. Кроме того, подготовка прибора к работе производится с использованием программы «SEAGUARD Studio». Данные хранятся в несъемном блоке. Однако для подготовки к работе и считывания данных прибор также извлекается из прочного корпуса. По классу точности датчиков температуры и RCM 9IW, и SEAGUARD RCM IW относятся к минимально точным, электропроводности и давления – к высшему классу точности (табл. 1, табл. 4). Набор такелажа и схема установки прибора аналогичны описанному выше для RCM 9IW.

Акустические доплеровские профилографы (ADCP) WorkHorse Sentinel 300 кГц (WHS300) и (ADCPLR) WorkHorse Long Ranger 75 кГц (WHLS75) имеют четыре излучателя акустического сигнала типа Convex, расположенные на верхней крышке прибора (рис. 1И, рис. 1К). Излучатели наклонены относительно горизонтальной оси на 20°. На приборах также установлены датчики температуры для коррекции значений скорости, могут быть установлены датчики давления (тензорный датчик). Запас времени по питанию 45 и 55 суток в установленном десятиминутном режиме измерения для профилографов WHS300 и WHLS75 соответственно.

Подготовка прибора к работе и считывание данных производится программно. Разбирать прибор требуется только для подключения (замены) питания или переключения типа интерфейса. Перед установкой прибор тестируется с помощью приложенного к нему программного обеспечения (программа «WinSc»). После контрольного включения проводится оценка измерений каналов температуры и давления. Перед включением прибора в рабочий режим проводится калибровка магнитного компаса, установка нуля глубины, времени встроенных часов. Непосредственно перед установкой профилографа в майну, программой «PlanADCP» выставляются следующие параметры: тип измерителя (частота сигнала), диапазоны измерения (океан), тип постановки (буйковая станция), диапазон глубин измерения, размер и количество ячеек (слоев) измерения, объем памяти, интервал осреднения (дискретность), максимальная продолжительность работы, примерная температура и соленость воды в период измерений. Также можно установить: допустимое стандартное отклонение измерений скорости, количество пингов в ансамбле измерений (умолчание 50 пингов), интервал между пингами, магнитное склонение. Более тонкая настройка прибора может осуществляться командами в программе «WinSc» перед пуском программы, планирующей постановку «PlanADCP». Можно устанавливать режим мгновенных измерений и его параметры, регулировать амплитуду сигнала, ширину полосы излучения, режим высокого разрешения (для WHLS75) и т. п. Перенос данных на компьютер, обработка измерений производится с помощью программы «WinSc». Более подробное представление исходных данных и вывод их в виде ASCII-кодов выполняется с помощью программы «WinADCP».

Излучатели профилографов можно ориентировать как вверх, так и вниз. Задаваемая толщина слоев лимитируется необходимой точностью измерения (табл. 5). По классу точности датчика температуры данные профилографы относятся к ненормируемым, что оправдано, поскольку данный параметр выступает как вспомогательный. По классу точности датчика давления они относятся к высшему классу точности (табл. 1). Кроме интерфейса типа RS232 (RS232C) профилографы течений также имеют интерфейс типа RS422. Передача данных производится со скоростью 9600–115 400 бод.

Приборы устанавливаются в монтируемой к корпусу раме. Набор такелажа и крепление WHS300 в майне выполняется аналогично описанному ранее для RCM 9IW, но приборы не утяжеляются. Профилограф течений WHLS75 имеет значительный вес (120 кг с рамой) и габариты (табл. 4), что требует использования иной, нежели для WHS300 схемы установки. Он устанавливается под лед в обогреваемую майну размером около 100×150 см внутри палатки КАПШ-3. Майна обогревается ТЭНом на плавучей раме мощностью 1 кВт. Дополнительно на стенках майны с двух сторон устанавливаются притопленные ТЭН мощностью 0,4–0,5 КВт. Синтетический трос, на котором висит прибор, пропускают через блок для обеспечения возможности его быстрого извлечения, а также возможности его подъема для контрольного считывания данных.

При расстановке профилографов WHS300 и WHLS75 следует иметь в виду возможность наложения сигналов разной частоты, приводящего к сбоям. Как показала практика работ на СП, для исключения наложения сигналов следует разносить измерители на расстояние не менее 50 м. В качестве примера использования данных измерения течения профилографом WHS300 может служить представление пространственного распределения средних векторов (трехсуточное осреднение) течений на горизонте 69 м, полученное в ходе экспедиции СП-36, приведенное на рис. 3.


Рис. 3. Пространственное распределение средних векторов течений на горизонте 69 м по данным, полученным профилографом течений WHS300

Заключение

Качественный и количественный прорыв в приборной базе, используемой при проведении океанологических исследований в Арктике, наиболее очевиден на примере экспедиций на научно-исследовательских дрейфующих станциях «Северный полюс», организуемых ААНИИ (табл. 6). Увеличение приборной базы по номенклатуре и по количеству измеряемых этими приборами океанологических параметров имело место, начиная с работ сезонного отряда дрейфующей станции СП-34 в 2006 г. Нарастание объема выполняемых наблюдений связанное с расширением приборной базы видно из табл. 7, где показан объем наблюдений, выполненных в тех же экспедициях, что и указанные в табл. 6. При этом если количество гидрологических станций определяется продолжительностью работ на каждой из СП, то объем выполненных измерений течений в большей степени связан с указанными выше тенденциями. Значительный спад количества данных наблюдений на дрейфующей станции СП-37 определяется субъективными причинами.


Таблица 6. Состав приборной базы (в единицах), активно используемой при проведении океанологических исследований на российских дрейфующих станциях «Северный полюс»


Таблица 7. Общий объем наблюдений, выполненных океанологическими отрядами на российских дрейфующих станциях «Северный полюс» с применением современной приборной базы.

Примечания:1 – суммарная продолжительность измерений течений на всех горизонтах


Углубление исследований СЛО с применением современных приборов и оборудования связано со следующими перспективными решениями:

• в рамках работ на дрейфующем льду:

– незначительное увеличение количества автономных измерителей температуры и электропроводности SBE 37SM и профилографов течений WHS300 для обеспечения полигонных постановок с целью исследования пространственно-временной изменчивости гидрологических параметров на отдельных горизонтах;

– качественное увеличение получаемой информации за счет исследования микропульсаций гидрологических параметров подо льдом, например, используя RMS (Recording Microstructure System) производства Rockland Scientific (Канада);

– использование современного вспомогательного оборудования (треноги, лебедки);

• в судовых экспедициях:

– увеличение количества измеряемых при зондировании параметров, например, при установке на розетте профилографа WHS600 или WHS300, имеющего режим работы LADCP, установке датчиков растворенных газов (кислород, метан), датчика флюоресценции фитопланктона;

– использование малоинерционных приборов для исследования поверхностного слоя, например, турбулиметров (VMP750VMP2000 производства Rockland Scientific или Turbo MAP-L производства ALEC Electronics (Япония)).

В работе использованы данные технических описаний приборов, а также информация фирм-изготовителей, размещенная на их сайтах.

Литература

Левашов Д.И. Техника экспедиционных исследований. М.: Издательство ВНИРО, 2003. 399 с.

S.B. Kuzmin[4], A.Yu. Ipatov[5]. Modern oceanographic instruments and observations technique applied with respect to research of hydrological conditions at the Arctic Ocean

Аbstract

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*