Коллектив авторов - Океанография и морской лед
Обрывные зонды широко используются в судовых высокоширотных экспедициях, поскольку наблюдения с помощью данных зондов можно производить в отсутствии специально оборудованного рабочего места и с минимальными потерями судового времени (без остановки судна). Работы выполняются с борта судов с помощью обрывных зондов типа XBT (expendable bathythermograph) и XCTD (expendable conductivity, temperature, depth probe) производства фирмы Lockheed Martin Corp. (США – Мексика), Tsurumi – Seiki Co., Ltd. (Япония), выполненных по лицензии фирмы Sippican Inc. (Япония), ныне входящей в той её части, которая производит океанологическое оборудование, в состав фирмы Lockheed Martin Corp. В ходе экспедиций последних лет использовались следующие модели батитермографов (XBT): T4, T5, T7, обрывных зондов электропроводности, температуры и давления (XCTD): XCTD-1, XCTD-2. Используемые в приборах датчики (табл. 3) по своему принципу работы аналогичны описанным ранее, отличаются малой инерцией. Для производства работ обрывными зондами кроме собственно зондов, используется пусковое устройство LM-3A производства Lockheed Martin Corp., бортовое устройство MK-21 той же фирмы или MK-130 производства фирмы Tsurumi-Seiki Co. и персональный компьютер с установленным на нем программным обеспечением «Win MK21» или «English_Ver. 3.02» данных фирм соответственно. Измеряемые параметры передаются от датчиков свободно падающего зонда через тонкую (0,15 мм) проволоку на бортовое устройство. Здесь аналоговые в случае XBT или цифровые сигналы в случае XCTD декодируются и передаются дальше в компьютер, работающий в режиме непрерывного получения данных. Перед началом работ программно производится настройка по типу прибора, пределам шкал измерения, устанавливается имя и место выводного файла с данными (в виде ASCII-кода). Затем после включения зонда производится контроль наличия связи в сети зонд-бортовое устройство. В случае XCTD далее производится тестирование датчиков зонда на воздухе. Глубина измерения температуры для зондов типа XBT определяется по времени наблюдения при полагающейся постоянной известной скорости погружения зонда. Поскольку работы с обрывными зондами, как правило, выполняются на ходу судна, процесс их выполнения полностью согласуется с мостиком в режиме двухсторонней связи.
Таблица 2. Характеристики зонда SBE 9plus CTD, профилографа SBE 19plus SeaCat и измерителя SBE 37SM MicroCat, используемых для получения термохалинных характеристик.
Примечания: 1 – разрешение от диапазона 0,0001 См/м для пресной воды до 0,0007 См/м при высокой солености; 2 – для зонда SBE 9plus CTD при работе в автономном режиме приведены характеристики дата-логгера SBE 17plus; 3 – никель-металлогидридные батареи (аккумуляторные), возможна установка щелочных типоразмера «D»
Таблица 3. Характеристики обрывных зондов.
Примечание: 1 – для приборов производства фирмы Tsurumi – Seiki Co.
Современные приборы и технологии, используемые в высокоширотных экспедициях для изучения временного хода термохалинных характеристик на отдельных горизонтахРяды данных, описывающих временной ход термохалинных характеристик, были получены в ходе измерений, выполняемых чаще всего с помощью измерителя температуры и электропроводности SBE 37 в модификации SBE 37SM MicroCat. Также в отдельных случаях в ходе работ на дрейфующей станции СП-37 для данных целей использовался описанный ранее профилограф SBE 19plus SeaCat, установленный в режиме буйковой станции. Набор такелажа и установка прибора на льду производится аналогично описанному ниже для SBE 37SM MicroCat. Все данные наблюдения выполнялись с дрейфующего льда в рамках экспедиций на станциях «Северный полюс».
Измеритель температуры и электропроводности SBE 37SM MicroCat изготовлен компанией SeaBird Electronics (США) (рис. 1Е). Предназначен для измерения в автономном режиме электропроводности (солености), температуры морской воды, дополнительно оснащен датчиком давления (табл. 2). В отличие от рассмотренной ранее продукции данной фирмы, измерения электропроводности происходят в режиме свободного протекания воды, без насоса, что обеспечивает меньшие расход питания и большую автономность. Запас времени по питанию (литиевые батарейки) 300 000 единиц измерения (электропроводность и температура). Подготовка прибора к работе и считывание данных после окончания работы выполняется прилагаемой к нему программой «SEATERM». Выставляется дискретность наблюдений, текущее время и формат его представления, время пуска прибора. Прибор устанавливается на открытом воздухе в заранее выбуренной майне. В силу конструктивных особенностей прибор крепится на отрезке стального троса сечением 4 мм, который в свою очередь крепится к синтетическому тросу сечением 13 мм. Над прибором в такелаж набирается «мокрый» вертлюг для предотвращения кручения троса. Снизу прибор утяжеляется ввиду своего малого веса (табл. 2) грузом весом 15 кг. На верхнем трехметровом участке синтетический трос пропускается через пластиковую трубу сечением 35 мм для предотвращения разрыва троса при выбуривании прибора. Над майной данная конструкция фиксируется доской, на которую заведена петля на верхней оконечности троса. Место положения майны обозначается флажками.
Современные приборы и технологии, используемые в высокоширотных экспедициях для изучения временного хода теченийЗначительным прорывом в океанологических исследованиях в СЛО стало использование при работе со льда измерителей и профилографов скорости течений. Впервые измерения течений с применением современных приборов и корректной привязкой к координатам (использование системы GPS) на дрейфующем льду были выполнены в рамках работы сезонного отряда СП-34. Для наблюдения за течениями при этом использовались акустические доплеровские измерители течения RCM 9IW (рис. 1Ж) производства фирмы AANDERAA (Норвегия) и акустические доплеровский профилограф течения ADCP (Acoustic Doppler Current Profiler) WorkHorse Sentinel 300 кГц (WHS300) производства фирмы RDI Teledyne (США) (рис. 1И). В дальнейшем к данным приборам добавились акустический доплеровский измеритель течений SEAGUARD RCM IW производства AANDERAA и акустический доплеровский профилограф течений дальней зоны действия ADCPLR (Acoustic Doppler Current Profiler Long Range) WorkHorse Long Ranger 75 кГц (WHLS75) от фирмы RDI Teledyne. Общим для всех данных приборов является принцип измерения скорости и направления течения. Основным различием между акустическими измерителями и профилографами течений является то, что в первом случае измерения производятся излученным акустическим сигналом на одном горизонте в кольцевой области горизонтальной плоскости, удаленной на радиус 0,5 м от прибора до внешней границы, удаленной на радиус 3,5 м от прибора. В случае профилографов измерения скорости течений выполняются на нескольких горизонтах по вертикали (в нескольких ячейках), причем измеряемая скорость отнесена не к отдельному горизонту, а к слою некоторой толщины (ячейке). Приборы имеют «мертвую зону» непосредственно за излучателями размером 6,12 и 12,57 м для профилографов WHS300 и WHLS75 соответственно. Характеристики RCM 9IW и SEAGUARD RCM IW сходны. Характеристики WHS300 и WHLS75 отличаются частотой акустического сигнала (табл. 4). С этим связаны и отличия в общей толщине исследуемого слоя и толщине каждой ячейки, в которой измеряется скорость течения (табл. 5).
Таблица 4. Характеристики измерителей течений RCM 9IW и SEAGUARD RCM IW, профилографов течений WorkHorse Sentinel (WHS300), WorkHorse Long Ranger (WHLS75).
Примечания: 1 – разрешение в задаваемых диапазонах: «arctic» –3,12…+5,83, «low» –2,7…+21,7, «wide» –0,6…+32,8, «high» +9,8…+36,6; 2 – первое значение для угла наклона до 15°, второе – для угла наклона до 35°; 3 – количество сборок батарей; 4 – для литиевых батарей
Таблица 5. Размер ячейки (слоя) измерения, общая толщина слоя и соответствующие им значения среднеквадратичного отклонения (СКО) скорости профилографов течений WHS300 и WHLS75
Набор описываемых приборов в такелаж и их установка на льду производится аналогично описанному ранее для SBE 37SM MicroCat.
Измеритель течения RCM 9IW кроме датчика скорости течения (тип 3680 или 4220) имеет датчик давления, основанный на пьезоэффекте (тип 4017D или 4017А…4017F), датчик электропроводности (тип 3919B или 3919А, 4119, 4120), датчик температуры (тип 3621). Характеристики штатных датчиков, указанных первыми приведены в табл. 4. Дополнительно может быть установлен датчик мутности (3612А), а также датчики флюоресценции фитопланктона или датчик растворенного кислорода.
Перед установкой измерителя выполняется его настройка. Производится очистка устройства накопления данных Data Storage Unit DSU 2990 (либо DSU 2990E). На центральной плате устанавливаются следующие параметры: интервал измерения температуры и электропроводности; количество каналов; режим работы излучателя акустических сигналов. По умолчанию производится 600 излучений акустического сигнала (пингов). Режимы, при которых производится 150, 300 или 1200 пингов реализуются перестановкой соединительных клемм на плате прибора. Затем производится включение прибора в режиме измерений за заданный интервал 1, 2, 5, 10, 20, 30, 60, 120 минут (Normal mode по умолчанию) «On», либо в режиме измерений в течение последней минуты заданного интервала «Burst mode», при этом питание экономится. Опрос датчиков происходит следующим образом. В нормальном режиме в течение заданного интервала выполняется установленное количество пингов, и один раз опрашиваются прочие каналы. В режиме «Non stop» – непрерывно (но с количеством пингов не более 600) дважды выполняется цикл излучения акустических сигналов и производится считывание каналов. Интервал измерения в секундах в этом случае равен количеству каналов, умноженному на 4 плюс 2 секунды. В режиме «R» заданное количество пингов приходится на десятиминутный интервал при непрерывном излучении акустических сигналов, а запрос каналов производится после последних 600 пингов.