Ася Казанцева - Как мозг заставляет нас делать глупости
Именно последовательность аминокислот и закодирована в генах. После того как из ДНК информация была переписана на РНК, начинается трансляция — строительство белка. При этом букв-нуклеотидов в РНК всего четыре, а базовых аминокислот — 20, и поэтому каждая аминокислота кодируется последовательностью из трех нуклеотидов. Этот язык расшифрован, словарик есть в каждом школьном учебнике, так что, зная последовательность нуклеотидов, можно предсказать, какой будет по следовательность аминокислот (обратная операция намного сложнее, потому что одна и та же аминокислота может кодироваться разными наборами нуклеотидов). Например, из кусочка РНК, который мы тут уже рассматривали, — UUC CCA GUU CCU UGG UAG — получится пептидная цепочка «фенилаланин — пролин — валин — пролин — триптофан». На этом синтез оборвется, потому что последние три нуклеотида — UAG — не кодируют никакую аминокислоту, это знак препинания, он означает «конец белка».
Каждый человек наследует эти генетические инструкции от родителей. Из тех 46 хромосом, которые есть в каждой клетке тела, ровно 23 принес сперматозоид и 23 были в яйцеклетке. За исключением генов Y-хромосомы (и, соответственно, Х-хромосомы, если вы мужчина и она у вас всего одна), вся остальная информация продублирована. Гены, необходимые для синтеза гемоглобина, коллагена, иммуноглобулинов, протеинкиназы М-зета и любого другого белка, мы получаем и от папы, и от мамы. Эти два варианта (аллели) одного и того же гена могут быть одинаковыми, а могут немного отличаться. Это очень хорошо: это означает, что если один ген сломан, то клетка будет пользоваться вторым и человек останется более или менее здоров.
Одна из важных функций белков — это способность обеспечивать обмен информацией между клеткой и внешней средой, в роли которой у многоклеточного организма выступает межклеточное пространство. В мембрану каждой клетки встроено огромное количество белков-рецепторов. На внеклеточной части рецептора есть участок, способный воспринимать поступающие сигналы. Если речь идет об органах чувств, то сигналом могут быть колебания воздуха, температура или свет, рецепторы на нейронах могут реагировать на изменения электрического потенциала, но в абсолютном большинстве случаев речь идет о взаимодействии с сигнальной молекулой (лигандом). Оно осуществляется просто за счет того, что сайт связывания — чувствительный участок данного рецептора — по своей форме и распределению зарядов совпадает именно с этой молекулой идеально, как ключ с замком (это настолько навязшая в зубах метафора, которой пользуются абсолютно все, что, когда я однажды попыталась расспросить одного из своих коллег, как же все-таки устроен дверной замок, он посмотрел на меня снисходительно и начал объяснять: «Ну, представь себе мембранный рецептор…»).
Так вот, когда происходит связывание сигнальной молекулы с рецептором, то в ответ он изменяет свою конформацию (то есть способ укладки аминокислотной цепи в трехмерную структуру), и после этого в клетке начинает происходить что-нибудь новое. Если белок одновременно и рецептор, и трансмембранный канал, то он откроется или закроется, и какие-нибудь молекулы начнут или перестанут проникать в клетку или выходить из нее. Если у рецептора есть каталитическая активность, то после активации его внутриклеточная часть начнет что-нибудь делать, например фосфорилировать проплывающие мимо белки (причем не какие попало, а те, которые нужно). Или рецептор может передать сигнал G-белку, а тот в ответ активирует свою альфа-субъединицу, и она отправится в свободное плавание, чтобы творить добро, — допустим, активирует аденилатциклазу, она превратит молекулу АТФ в сигнальную цАМФ, которая в свою очередь подействует на какую-нибудь протеинкиназу… В общем, произойдет каскад из десятка молекул, которые по принципу домино будут активировать и подавлять друг друга, и в конечном итоге это приведет к запуску какого-нибудь ответа на сигнал со стороны клетки как целого. Например, информация дойдет до ядра, там начнут считываться какие-нибудь гены, которые до этого были неактивны, и клетка начнет строить белки, которых у нее раньше не было. Или информация дойдет до каких-нибудь мембранных каналов, и они изменят свою миграционную политику — начнут впускать или выпускать что-то, чего раньше не замечали. Если речь идет о нервной клетке, то такие изменения в миграционной политике могут привести к изменению концентрации ионов внутри и снаружи клетки и, как следствие, к генерации нового нервного импульса, который в свою очередь может повлиять на поведение человека.
Я тут совершенно не ставлю себе задачу описать все возможные сигналы и все способы ответов на них. Я только хочу подчеркнуть, что все эти штуки на самом деле очень подробно изучены и с каждым годом накапливается все больше деталей. Современная молекулярная биология довольно твердо и четко представляет, что творится в клетке на уровне молекул: кто с кем связывается, почему это возможно, как они изменяются, как отрываются друг от друга, куда и почему плывут дальше. Все детали описаны в научных статьях, а все базовые принципы — в университетских учебниках (например, по цитологии), и если вы зададитесь во просом, какой именно молекулярный каскад происходит, когда молекула инсулина взаимодействует с рецептором на поверхности мышечной клетки, то найти эту информацию не составит никакого труда. Я не стала вдаваться в такие детали в книжке, потому что это никто не стал бы читать.
Рецептор не обязательно расположен именно на мембране клетки. Некоторые сигнальные молекулы, например стероидные гормоны, умеют самостоятельно просачиваться сквозь мембрану, и тогда рецепторы к ним могут находиться внутри клетки — в цитоплазме или на оболочке ядра. Но дальше происходит все то же самое: рецептор меняет конформацию, воздействует таким образом на еще какой-нибудь белок, кто-нибудь отщепляет от кого-нибудь какую-нибудь молекулярную группу, появляются какие-нибудь новые сигнальные молекулы, они воздействуют, допустим, на рецепторы ядра, внутри него появляются другие сигнальные молекулы, связываются с ДНК, запускают или подавляют считывание какого-нибудь гена, и клетка опять же изменяет какую-нибудь свою активность.
Восприятие химических сигналов клеточными рецепторами — это основа работы нервной системы. Каждая наша нервная клетка — нейрон — состоит из тела и множества отростков: дендритов (их много, и они собирают информацию) и аксона (он, как правило, один, хотя обычно разветвляется в конце и отправляет информацию дальше, к следующим нейронам). Информация — это электрический ток, который движется по отростку благодаря работе мембранных каналов, которые в нужный момент запускают внутрь клетки ионы натрия, в нужный момент выпускают из клетки ионы калия, все это приводит к изменению электрического заряда снаружи и внутри мембраны и к дальнейшему распространению сигнала. Но самое интересное начинается в тот момент, когда электрический импульс доходит до конца аксона. Просто перескочить на дендрит следующего нейрона он не может. Контакт между нейронами, синапс, устроен более сложно.
Абсолютное большинство нейронов млекопитающих общаются друг с другом с помощью нейромедиаторов. Когда электрический сигнал доходит до конца аксона, под его действием в синаптическую щель высвобождаются молекулы, заранее запасенные в пресинаптическом пространстве. Это и есть нейромедиаторы — дофамин, норадреналин, серотонин, гамма-аминомасляная кислота или любой другой из героев книжки. Они героически проплывают десятки нанометров синаптической щели и связываются с рецепторами на постсинаптической мембране — а это приводит к тому, что второй нейрон тоже начинает впускать или выпускать ионы калия и натрия и генерирует свой собственный электрический ток (или, наоборот, блокирует всякую возможность возникновения потенциала, если речь идет о тормозном нейромедиаторе).
Прелесть такой системы передачи в том, что на нее возможно влиять множеством разных способов. Первый нейрон может выпускать множество разных нейромедиаторов в любых количествах. Он может захватывать их из синаптической щели обратно. В пространстве между нейронами могут присутствовать ферменты, расщепляющие нейромедиатор. Рецепторы могут быть более или менее чувствительны к нейромедиаторам. На все эти параметры можно влиять с помощью дополнительных молекул, как вырабатываемых в организме, так и купленных в аптеке, и таким образом в широких пределах модифицировать работу нейронов, а значит, и настроение, память, обучение. Еще один очевидный пример лигандов, связывающихся с рецепторами в многоклеточном организме, — это гормоны. В узком смысле гормонами называют вещества, которые вырабатываются специализированными эндокринными железами — эпифизом, надпочечниками, щитовидной железой и т. д. Более современное определение включает любые вещества, которые вырабатываются в одних тканях и влияют на другие, например лептин, который производится жировыми клетками, или холецистокинин, вырабатывающийся в тонком кишечнике. Оба этих гормона-в-широком-смысле могут воздействовать на мозг, подавляя чувство голода.