KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной?

Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной?

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Игорь Кароль, "Парадоксы климата. Ледниковый период или обжигающий зной?" бесплатно, без регистрации.
Перейти на страницу:

Итак, благие намерения высказаны в мире почти единодушно. Однако хорошо известно, куда они могут привести… Хочется верить, что в данном случае исход будет куда как оптимистичнее.

Глава тринадцатая

Фундамент будущих свершений

Время делает свое дело. А вы, люди?

С. Е. Лец

Что можно сделать для благоприятных изменений климата

Строить планы, безусловно, несравнимо легче, чем претворять их в жизнь. К сожалению, достижения быстрого эффекта в противоборстве с глобальным потеплением ждать не приходится.

Даже при полном прекращении выбросов парниковых газов изменение климата будет продолжаться в течение нескольких веков, до тысячелетия (!) – так велика инерция системы.

Поэтому наш удел – постепенно, шаг за шагом, способствовать улучшению экологической ситуации и при этом, что психологически очень важно, видеть плоды своих усилий. Какие же пути противостояния глобальному потеплению предлагают специалисты? Выделим основные векторы движения и укажем, какая работа «будет делаться и делается уже».

Пожалуй, наиболее существенным является переход на экологически чистые возобновляемые источники энергии. Выше уже говорилось, что вклад энергетического сектора экономики в эмиссию парниковых газов достигает одной четверти. Сегодня альтернативой сжиганию нефтепродуктов и природного газа выступают солнечные и ветряные энергоустановки (см. рис. 24 и 25 цв. вклейки).

Согласитесь, это так характерно для человеческой природы – попытаться удовлетворить свои энергетические запросы за счет «доброго дяди» – Солнца. Подобная идея витает в воздухе давно: уже в 1767 г. швейцарский ученый Г. де Соссюр построил первый в мире солнечный коллектор и использовал его для разогрева воды и пищи. Однако для реального исполнения этой мечты Солнце должно следовать лозунгу, провозглашенному В. Маяковским, – «светить всегда, светить везде». В переводе с возвышенно-поэтического языка на канцелярско-прозаический: гелиоэнергетические установки целесообразно строить там, где солнечное сияние составляет не менее 2000 часов в году, а интенсивность суммарной радиации не ниже 600–800 Вт/час. Понятно, что Шпицберген и «солнечный Магадан» сразу отпадают. Сегодня мировыми лидерами по выработке энергии солнечными электростанциями являются США, а в Европе – Испания. В Испании ужу работают 9 солнечных заводов и еще 25 солнечных электростанций строится. Например, в Альмерии, над которой безоблачное небо свыше 300 дней в году, станция «Цеза-1» имеет мощность 0,5 МВт (в 2010 г. доля солнечной энергии составляла 17,7 % общего количества электроэнергии, произведенной в Испании).

В целом доля гелиоэнергетики в мировой выработке энергии пока невелика (около 2,7 %), а интерес к ней возникает только во время нефтяных кризисов. Нынешний же пик интереса спровоцирован недавними трагическими событиями на Фукусиме (Япония), поставившими под сомнение перспективы атомной энергетики, по крайней мере в сейсмоопасных районах.

В сложившихся условиях возник уже упоминавшийся нами план Desertec, предусматривающий строительство солнечных тепловых электростанций в пустынях Северной Африки и Ближнего Востока.

Специалисты утверждают, что для покрытия потребности в электроэнергии, не только местной, но и европейской, достаточно застроить всего 0,3 % площади этих пустынь, а с площади в один квадратный километр можно за год получать 300 ГВт/час электроэнергии (потребление такого количества солнечной энергии позволит сократить выбросы CO2 на 200 тыс. т в год).

Принцип работы солнечных тепловых электростанций заключается в следующем: вода, нагретая солнечными лучами, превращается в пар, который приводит в действие турбину, генерирующую электроэнергию. Использование в солнечных тепловых электростанциях системы зеркал позволяет сконцентрировать солнечную энергию и тем самым повысить коэффициент полезного действия установки.

Реализация плана Desertec рисует радужные перспективы не только для стран региона, но и для европейцев, надеющихся к середине столетия покрыть 60–80 % своих потребностей в энергии за счет возобновляемых ее источников, в том числе на 20 % – с помощью гелиоэнергетики. При этом цена одного киловатт-часа должна снизиться с сегодняшних 23–27 евроцентов до 5. Тут, правда, нас «терзают смутные сомнения»: как известно, «голь (на эту роль идеально подходит вечно нуждающийся в средствах Минфин) на выдумки хитра», поэтому возможно появление какого-либо дополнительного налога, например на «амортизацию Солнца». Ложкой дегтя в этой бочке арабо-европейского меда является политическая нестабильность в регионе. Перебои поставок электроэнергии в Европу, возникни серьезная напряженность, могут принять такие масштабы, что не раз возникавшие в первом десятилетии XXI в. энергетические проблемы, связанные с российско-украинским газовым конфликтом, покажутся «детской шалостью», о которой даже неудобно вспоминать.

Альтернативой проекту Desertec может оказаться названный по имени эллинского бога Солнца греческий проект производства солнечной электроэнергии «Гелиос»: в соответствии с ним предполагается получать до 2,2 ГВт к 2020 г. и 10 ГВт к 2050 г. Греки рассматривают реализацию этого масштабного проекта как один из путей вывода страны из ее нынешнего тяжелого финансового положения и уже сегодня высказывают готовность экспортировать в будущем значительную часть произведенной электроэнергии в намеревающуюся отказаться от атомной энергетики Германию[24]. Что ж, поживем – увидим, но, по мнению экспертов, рынок солнечных тепловых электростанций должен удвоиться уже в ближайшее десятилетие. Очевидно, что в России эксплуатация подобных установок возможна лишь в южных областях.

Самым главным альтернативным источником энергии является ветер.

Ветроэнергетика развивается наиболее быстрыми темпами. Ветер, напомним, возникает из-за неравномерности нагрева Солнцем различных географических зон на Земле. Идея преобразовать кинетическую энергию ветра в другие ее формы возникла очень давно. Парус использовался с незапамятных времен для перемещения по водным поверхностям, ветряные мельницы, преобразовывавшие энергию ветра в механическую, существовали в Египте уже во II–I вв. до н. э., в Западной Европе они появились в XIII в. благодаря крестоносцам. В XVI в. на их основе начали строить городские водонасосные станции: в 1526 г. такая станция появилась в Толедо – в ту пору столице Испании, в 1582 г. – в Лондоне, в 1608 г. – в Париже. Ветряные мельницы, производящие электрическую энергию, изобретены в Дании в XIX в. Во время Второй мировой войны в Дании насчитывалось несколько десятков ветроэлектростанций, дававших 80 млн кВт/ч электроэнергии. В 1968 г. в Австралии эксплуатировались более 250 тыс. ветроустановок. В конце 2010 г. общая мощность всех ветрогенераторов в мире достигла 196,6 ГВт, ими было произведено 430 ТВт/ч (тераватт в час, 1 тераватт = 1.1012 Вт/час) электроэнергии, что составило 2,5 % всей произведенной в мире (рис. 30).

Рис. 30. Суммарные мощности ветроустановок (ГВт) в период 1997–2010 гг., по данным Международного энергетического агентства

При этом на Европу приходится 44 % ветряных установок, на Азию и Северную Америку – 31 % и 22 % соответственно.

Рис. 31. Суммарные установленные мощности (в МВт – мегаваттах) по странам мира в 2005–2010 гг., согласно данным Европейской ассоциации ветроэнергетики и Совета по глобальной ветроэнергетике: 1 – США, 2 – Китай, 3 – Германия, 4 – Испания, 5 – Индия, 6 – Япония, 7 – Австралия

Развивать большую ветроэнергетику (мощностью более 1 МВт) целесообразно в районах, где средняя годовая скорость ветра больше 8 м/с и годовое число часов, когда установка может работать, превосходит 2000. Хотя ветрогенератор начинает производить электроток уже при скорости ветра 3 м/с и отключается при скоростях свыше 25 м/с. Оптимальная же скорость составляет 15 м/с, при ней достигается максимальная мощность выработки электроэнергии. В 2009 г. 82 % ветрогенераторов в мире имели мощность 1,5–2,5 МВт.

Достоинства ветроэнергетики довольно очевидны: ветры дуют повсеместно и их ресурс практически неисчерпаем («ветрозапасы» в 100 раз превосходят запасы гидроэнергии всех рек Земли). Себестоимость одного киловатт-часа, генерируемого ветроустановками, ниже, чем производимого угольными электростанциями: к примеру, в США это 2,5–5 центов (в зависимости от силы ветра) и 4,5–6 центов соответственно (рис. 25 цв. вклейки).

В одной из популярных брошюр, изданных в США, помещен рисунок, на котором изображен ветродвигатель и под ним – корова. В подписи к рисунку говорится, что стоимость энергии, производимой ветроэнергетической установкой, равна стоимости молока от этой коровы.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*