KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Тибо Дамур, "Мир по Эйнштейну. От теории относительности до теории струн" бесплатно, без регистрации.
Перейти на страницу:

После семинара Эйнштейн подошел поздравить Гейзенберга с его выдающимися результатами и пригласил составить ему компанию на пути домой, чтобы подробнее обсудить нововведения, лежащие в основе нового формализма. По возвращении домой Эйнштейн попросил его еще раз уточнить физическую мотивацию, ведущую к идее замены непрерывных траекторий бесконечной таблицей амплитуд переходов.

Послушаем ключевую часть их диалога, воспроизведенную впоследствии самим Гейзенбергом{142}:

ГЕЙЗЕНБЕРГ:…Поскольку в теории естественно вводить лишь наблюдаемые величины, мне казалось правильным не вводить ничего, кроме частот и амплитуд{143}, выступающих в роли, так сказать, представителей орбит электронов.

ЭЙНШТЕЙН: Неужели вы всерьез думаете, что в физической теории можно ограничится лишь введением наблюдаемых величин?

ГЕЙЗЕНБЕРГ: Я думал, что вы использовали буквально эту же идею в качестве основы вашей теории относительности. Вы специально подчеркивали, что нельзя говорить об абсолютном времени, потому как никто не может наблюдать это абсолютное время. Вы говорили, что только показания часов, сделанные в движущейся или покоящейся системе, являются определяющими для измерения времени.

ЭЙНШТЕЙН: Возможно, я действительно использовал подобного рода философию, но от этого идея не становится менее абсурдной. Или я бы сказал более осторожно, что с эвристической точки зрения возможно было бы полезно помнить, что является по-настоящему наблюдаемым. Однако, в принципе, глубоко ошибочно стремиться строить теорию исключительно на наблюдаемых величинах. В реальности все происходит как раз наоборот. Только теория решает, что является наблюдаемым, а что нет.

Мы выделили последнюю фразу, поскольку она еще долго звучала в голове молодого Гейзенберга и сыграла важную (хотя и малоизвестную) роль в дальнейшем развитии квантовой теории. Скажем лишь, что этот «урок» (теория сама решает, что является наблюдаемым) был усвоен Эйнштейном в результате долгих лет блужданий в поисках конструкции общей теории относительности. В течение многих лет связь между координатами пространства и времени и измерениями длин и промежутков времени (кристально ясная в специальной теории относительности) оставалась весьма туманной в общей теории относительности. Эйнштейн сумел разобраться с причиной такого долгого непонимания лишь в конце 1915 г., когда, уже построив теорию, осознал, что математический формализм теории относительности сам позволяет определить a posteriori то, что является наблюдаемым, когда пространство-время деформируется материей.

«Волны тут, кванты там!»

В начале 1926 г., приблизительно в то же время, когда Гейзенберг выступал на семинаре в Берлине, другой математический формализм был предложен австрийским теоретиком Эрвином Шредингером в качестве замены «старой» теории квантов Планка – Эйнштейна – Бора. Этот формализм, называемый «волновой механикой», согласно самому Шредингеру, уходил корнями в идеи Луи де Бройля, а также в «короткие, но удивительно прозорливые» заметки, сделанные Эйнштейном (в его письмах и статье 1924 г., обсуждавшейся в предыдущей главе). Эта волновая механика казалась абсолютно отличной от матричной механики Борна – Гейзенберга – Йордана. В одной состояние рассматриваемой физической системы (скажем, электрон, движущийся по орбите вокруг ядра атома водорода) описывалось волновой амплитудой А, непрерывной функцией{144} времени и координат электрона, а другая говорила лишь о дискретных переходах между различными возможными стационарными состояниями атома и описывала их посредством бесконечных таблиц амплитуд переходов anm. Два описания, казалось, были диаметрально противоположны друг другу. Первое давало полностью непрерывную картину (как во времени, так и в конфигурационном пространстве системы), тогда как предметом изучения второго были исключительно дискретные переходы системы. Однако, несмотря на это, Шредингер сумел достаточно быстро показать математическую эквивалентность двух подходов. А именно, он доказал, что знание «волнового уравнения», описывающего распространение непрерывной амплитуды А, позволяет в то же время находить возможные стационарные состояния системы, их квантовые энергии и бесконечные таблицы амплитуд переходов между этими состояниями. Грубо говоря, возможные стационарные состояния были аналогичны ряду состояний чистой вибрации упругого объекта, такого, например, как струна фортепиано, которая может звучать в основном тоне или же в обертоне, соответствующем более высокой гармонике (вторая на октаву выше первой, третья на квинту выше второй и т. д.).

На самом деле, какое-то время казалось, что шредингеровское волновое описание было более полным, нежели дискретное описание Борна – Гейзенберга – Йордана. В частности, шредингеровское описание наводило на мысль, что можно даже просто «выбросить» идею квантовой дискретности (несмотря на то что оно позволяло объяснить многие явления, включая эйнштейновскую теорию атомных переходов) и описывать реальность исключительно с точки зрения непрерывных волн.

Изначально Эйнштейн воспринял формализм Шредингера с удовлетворением и даже некоторым облегчением, поскольку этот подход казался ближе его интуитивным представлениям о реальности, нежели колдовские таблицы умножения, используемые Гейзенбергом и компанией. Однако вскоре он был разочарован. В первую очередь потому, что волновая амплитуда А распространяется уже не в обычном трехмерном пространстве: для системы из двух частиц это было шестимерное пространство, для системы из трех частиц – девятимерное, для четырех – двенадцатимерное и т. д. К тому же в волновой механике возникали большие сложности при описании всевозможных экспериментальных фактов, которые в течение 20 лет подводили Эйнштейна и других исследователей к необходимости введения дискретной структуры в квантовой механике. В августе 1926 г. в письме Паулю Эренфесту Эйнштейн следующим образом подытоживает свои чувства:

«Волны тут, кванты там! Реальность тех и других прочнее камня. Но дьявол свел их вместе (и этот союз так же реален и прекрасен)».

Эту неудовлетворенность в отношении парадоксального поведения природы, проявляющей одновременно волновые и корпускулярные свойства, Эйнштейн сохранял до конца своей жизни. Как мы увидим, то, что убедило большинство ученых, не смогло развеять его сомнений.

«Духовое поле» Эйнштейна, «амплитуда вероятности» Борна и «соотношения неопределенностей» Гейзенберга

Нашей целью здесь не является детальное обсуждение развития физической интерпретации математического формализма квантовой теории. Мы собираемся лишь описать ту важную, хотя иногда и скрытую роль, которую в этом развитии сыграли определенные идеи Эйнштейна.

Первое существенное продвижение было сделано Максом Борном летом 1926 г. Как он сам описывал{145}: «Моим отправным пунктом стало соображение Эйнштейна, касающееся взаимосвязи между полем волны и квантом света. Он [Эйнштейн] сказал приблизительно следующее: волны служат лишь для того, чтобы управлять световыми корпускулами, и в этом смысле он говорил про “духовые поля”, определяющие вероятность выбора того или иного пути… квантом света…» Эти соображения Эйнштейна про некоторое «духовое поле», или «управляющее поле», приватно обсуждались им в 1920-х гг. со многими учеными (Макс Борн, Юджин Вигнер и др.), однако они никогда не публиковались. Как бы то ни было, вполне возможно, именно эти соображения мотивировали Борна на интерпретацию волновой амплитуды A (t, q) физической системы как «амплитуды вероятности» того, что система будет находиться в момент времени t в определенной конфигурации, описываемой переменными q. [Как говорилось выше, когда рассматривается одна частица, q обозначает три пространственные координаты, тогда как в системе из двух частиц q обозначает шесть координат, необходимых для задания положения обеих частиц, и т. д.] Борн далее уточняет (в сноске, добавленной при перечитывании корректуры), что вероятность найти систему в конфигурации q пропорциональна квадрату{146} амплитуды A (q). И затем подытоживает суть предложенной им интерпретации квантовой теории: «Движение частиц подчиняется закону вероятности, тогда как сама вероятность эволюционирует в соответствии с законом причинности».

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*