KnigaRead.com/

Джеймс Глейк - Хаос. Создание новой науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джеймс Глейк, "Хаос. Создание новой науки" бесплатно, без регистрации.
Перейти на страницу:

Когда Каданофф занимался этим вопросом в 60-х годах, фазовые переходы ставили ученых в тупик. Представьте себе процесс намагничивания металлического бруска: по мере того как брусок переходит в магнитное состояние, он должен как бы определиться со своей ориентацией, которую выбирает произвольным образом. Этот выбор должна повторить каждая крошечная частица металла. Но как?

В процессе выбора атомы металла должны обмениваться друг с другом определенной информацией. С точки зрения Каданоффа, указанное сообщение наиболее наглядно может быть описано на языке масштабов. В сущности, он предположил, что металл разделен на небольшие ячейки, каждая из которых сообщается со своими ближайшими соседками, причем подобное сообщение можно описать так же, как и взаимодействие любого атома с близлежащими. Отсюда вытекает необходимость масштаба. Наиболее удобно рассматривать металл как фракталоподобную модель, состоящую из ячеек различных размеров.

Теперь для полного воцарения идеи масштабирования требовались математический аппарат и детальное исследование реальных систем. Каданофф чувствовал, что взялся за нелегкое дело, но зато открыл мир изумительной красоты, рожденной универсальностью неписаных природных законов. Универсальность была налицо. Ведь такие, казалось бы, не связанные друг с другом феномены, как кипение жидкостей и намагничивание металлов, подчинялись одним и тем же правилам.

Кеннет Вильсон проделал немалую работу, связавшую все экспериментальные факты воедино в рамках теории «групп перенормировки». Он обеспечил физиков эффективным методом реальных вычислений характеристик реальных систем. Метод перенормировки, появившийся в физике в 40-х годах как раздел квантовой теории, сделал возможным расчеты взаимодействия электронов и протонов. Главной трудностью таких вычислений (как, впрочем, и тех, которые занимали Каданоффа и Вильсона) являлась бесконечность некоторых величин. Борьба с ней была занятием суетным и малоприятным, и Ричард Фейнман, Джулиан Швингер, Фримен Дайсон и другие физики ввели понятие о перенормировке, чтобы освободиться от бесконечностей.

Лишь намного позже, в 60-х годах, Вильсон докопался до причин успеха идеи перенормировки. Как и Каданофф, он размышлял над принципами масштабирования. Определенные характеристики (такие, например, как масса частицы) всегда считались постоянными, как и масса любого предмета, встречающегося нам в повседневной жизни. Принцип масштабирования быстро распространился благодаря тому, что трактовал величины вроде массы отнюдь не как постоянные. Масса и подобные ей характеристики в процессе перенормировки варьируются как в сторону уменьшения, так и в сторону увеличения в зависимости от масштаба, в котором их рассматривают. Эта идея, казавшаяся полной нелепостью, была точным аналогом рассуждений Мандельбро о геометрических формах и береговой линии Великобритании (о том, что их длину невозможно измерить вне зависимости от масштаба). Здесь присутствовала определенная доля относительности. Местоположение наблюдателя — близко ли он, далеко ли, на берегу моря или на космическом спутнике — влияло на результат. Мандельбро также заметил, что наблюдаемые при переходе от одного масштаба к другому перемены подчиняются определенным закономерностям, далеким от произвольности. Изменчивость общепринятых измерений массы или длины говорила о том, что фиксированной остается некая величина иного типа. В случае с фракталами такой величиной было фрактальное измерение — инвариант, который можно рассчитать и использовать в качестве инструмента для дальнейших вычислений. Допущение, что масса может варьироваться в зависимости от масштаба, означало, что математики могут различить феномен подобия невзирая на масштаб явления.

Таким образом, когда возникает необходимость в трудоемких вычислениях, группы перенормировки Вильсона предлагают иной маршрут следования в дебрях сложных проблем. До этого единственным способом изучения в высшей степени нелинейных процессов являлась так называемая теория пертурбаций. Теория эта предполагает, что нелинейная проблема близка к определенной линейной задаче, которая может быть решена, и отстоит от нее лишь на расстояние небольшого «возмущения». Разрешив линейную задачу, мы должны прибегнуть к сложному набору операций с так называемыми диаграммами Фейнмана. Чем точнее нам нужно решить нелинейную задачу, тем больше таких громоздких диаграмм необходимо построить. Если повезет, расчеты приведут нас к решению, но удача — увы! — имеет привычку ускользать всякий раз, когда вопрос особенно интересен. Файгенбаум, как и любой молодой ученый, занимавшийся в 60-х годах физикой частиц, долгими часами строил вышеупомянутые диаграммы. В конечном счете он бросил это занятие, убедившись, что теория пертурбаций скучна, однобока и мало что объясняет. Зато он проникся симпатией к группам перенормировки Вильсона. Они, допуская внутреннее подобие, позволяли устранить некоторые сложности.

На практике же данная теория была не слишком доступной: чтобы выбрать верный способ вычислений и уловить внутреннее подобие, требовалось немало изобретательности. Впрочем, она исправно работала и, как заключил Файгенбаум, даже подвигала физиков на ее применение к проблеме турбулентности. В конце концов внутреннее подобие стало ключом к турбулентности с ее многочисленными колебаниями и завитками. Но о пороге турбулентности, о таинственном моменте, когда упорядоченная система превращается в хаотичную, теория Вильсона как будто ничего не говорила. В частности, не находилось доказательств тому, что данный переход подчиняется закономерностям масштабирования.


Еще в аспирантуре Массачусетского технологического института Файгенбаум приобрел полезный навык, к которому прибегал затем на протяжении многих лет. Однажды он прогуливался с друзьями близ водохранилища Линкольна, что в Бостоне. Привычка гулять по четыре-пять часов выработалась у него давно; она позволяла настраивать мозг на разнообразные впечатления и мысли, приходившие в голову. В тот раз он покинул приятелей и шел один. Миновав группу людей, устроивших в парке пикник, и отдаляясь от них, Митчелл часто оглядывался — прислушивался к звукам голосов, наблюдал жестикуляцию при разговорах, движения рук во время еды. Внезапно он ощутил, что переступает некую границу: фигуры стали слишком крошечными, их действия и движения — бессмысленными, случайными. До него доносились слабые, потерявшие всякий смысл звуки.

Непрестанное движение и непонятная суета жизни… Файгенбаум вспомнил слова Густава Малера. Они выражали те чувства, которые композитор попытался воплотить в третьей части своей Второй симфонии. Словно движения танцующих пар в залитом светом зале, в который вглядываешься из ночной темноты, стоя на расстоянии, откуда музыки уже не слышно… Кажется, что жизнь совсем не имеет смысла. Файгенбаум слушал Малера и вчитывался в Гёте, обуреваемый высокими романтическими порывами. Именно «Фаустом» Гёте он наслаждался больше всего, впитывая мир великого поэта, который сочетал страстность с блестящим умом. Не будь он столь романтически настроен, пожалуй, оставил бы без внимания испытанное им на прогулке смятение. В конце концов, почему бы объектам, рассматриваемым с больших расстояний, не казаться малыми, утратившими свое значение? Физические законы предлагали весьма тривиальное объяснение их сжатия. Однако при более глубоких раздумьях связь между сокращением размеров и потерей объектом своего значения казалась уже не столь очевидной. Почему вещи, уменьшаясь, становятся непостижимыми?

Файгенбаум вполне серьезно попытался осмыслить этот факт с позиций теоретической физики, используя предлагаемый ею научный аппарат. Он задался вопросом, что можно сказать о механизме восприятия человеческого мозга. Предположим, наблюдая за поведением людей, мы делаем о нем определенные выводы. Как человеческий мозг рассортирует огромное количество информации, доступное органам чувств? Ясно — или почти ясно, — что в мозгу не содержится прямых копий окружающего мира. Там не существует «собрания» форм и идей, с которыми можно сравнить воспринимаемые образы. Информация, которая хранится внутри нас, весьма пластична, что делает возможными совершенно фантастические сопоставления и скачки воображения. В ней присутствует доля хаоса. Мозг, кажется, более гибок, чем наводящая в нем порядок классическая физика.

В то же время Файгенбаум размышлял и о феномене цвета. Некоторые дебаты по этому поводу в начале XIX века были вызваны разногласиями последователей Ньютона в Англии и Гёте в Германии. Сторонникам Ньютоновой физики идеи Гёте представлялись околонаучным бредом. Великий немец отказался от рассмотрения цветности как постоянной характеристики, измеряемой с помощью спектрометра и фиксируемой, словно пришпиленная к картону бабочка; по утверждению Гёте, цвет зависит, скорее всего, от восприятия. «Слегка склоняясь то в одну, то в другую сторону, природа колеблется в предписанных ей пределах, — отмечал он, — и таким образом появляются все многообразные состояния явлений, которые представлены нам во времени и пространстве».

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*