Саймон Сингх - Книга шифров .Тайная история шифров и их расшифровки
На первый взгляд кажется бессмысленным добавлять к машине неподвижный отражатель, который не приводит к увеличению количества шифралфавитов. Однако польза от него станет ясна, когда мы будем рассматривать, как же в действительности используется эта машина для шифрования и расшифрования сообщения.
Допустим, оператор хочет отправить криптограмму. Прежде чем приступить к шифрованию, оператор должен вначале повернуть шифраторы, установив их в определенное начальное положение. Существует 17 576 возможных расположений и, соответственно, 17 576 возможных начальных установок. Начальные положения шифраторов будут определять, каким образом зашифровывается сообщение. Мы можем рассматривать «Энигму» как обобщенную шифрсистему, в которой способ зашифровывания определяется начальными установками. Другими словами, начальные установки обуславливают ключ. Начальные установки обычно задаются в шифровальной книге, в которой указаны ключи на каждый день и которая имеется у всех в коммуникационной сети. Для распространения шифровальных книг требуется время и усилия, но поскольку в день нужен только один ключ, то можно, например, предусмотреть рассылку шифровальных книг, содержащих 28 ключей, только один раз в четыре недели. Для сравнения, если бы в войсках пришлось бы применять одноразовые шифрблокноты, то для каждого сообщения требовался бы новый ключ, и задача распределения ключей оказалась бы несоизмеримо сложнее. Как только шифраторы будут установлены в положения, задаваемые ключом текущего дня из шифровальной книги, отправитель может начинать зашифровывание. Он вводит с клавиатуры первую букву сообщения, смотрит, какая буква высвечивается на панели с лампочками, и записывает ее как первую букву шифртекста. Затем, как только первый шифратор автоматически повернется на одну позицию, отправитель вводит вторую букву сообщения и так далее. После того как шифртекст будет полностью подготовлен, он вручается радисту, который передает его получателю сообщения.
Чтобы расшифровать сообщение, получателю необходимо иметь другую «Энигму» и копию шифровальной книги, в которой указаны начальные положения шифраторов на текущий день. Получатель устанавливает машину в соответствии с книгой, набирает букву за буквой шифртекст, и на панели с лампочками считывает открытый текст. Другими словами, отправитель набирал открытый текст, чтобы получить шифртекст, а здесь получатель набирает шифртекст, чтобы получить открытый текст, то есть зашифровывание и расшифровывание являются зеркальными процессами. Простота расшифровывания обеспечивается благодаря отражателю. Из рисунка 36 можно видеть, что вводя с клавиатуры Ь и двигаясь далее по электрической цепи, мы окажемся у В. Но точно так же, вводя с клавиатуры d двигаясь далее по электрической цепи, мы вернемся к В.
Машина зашифровывает букву открытого текста в букву шифртекста, и до тех пор, пока машина находится в этом же положении, она будет преобразовывать в процессе расшифровывания эту букву шифртекста в первоначальную букву открытого текста.
Ясно, что ни ключ, ни шифровальная книга, в которой он содержится, ни при каких обстоятельствах не должны попасть в руки противника. Вполне может случиться, что противник сумеет заполучить «Энигму», но не зная начальных установок, используемых для зашифровывания, он не сможет дешифровать перехваченное сообщение. Без шифровальной книги криптоаналитик противника должен проверять все возможные ключи, что означает перебор всех 17 576 возможных начальных установок шифраторов. Доведенный до отчаяния криптоаналитик должен будет установить шифраторы на захваченной «Энигме» в некотором положении, ввести короткий фрагмент шифртекста, и посмотреть, будет ли на выходе какой-нибудь осмысленный текст. Если нет, то он должен изменить положение шифраторов и повторить попытку еще раз. Если криптоаналитик смог бы проверять одно положение шифраторов в минуту и работать круглосуточно, то ему потребовалось бы почти две недели, чтобы проверить все установки. Это — средний уровень стойкости. Но если бы противник усадил за проверку дюжину людей, то все положения шифраторов можно было бы проверить за день. Поэтому Шербиус решил повысить стойкость своего изобретения, увеличив число начальных установок и, тем самым, количество возможных ключей.
Он мог бы повысить стойкость, добавив еще шифраторов (каждый новый шифратор увеличивает число ключей в 26 раз), но это привело бы к увеличению размеров «Энигмы». Вместо этого он поступил следующим образом. Прежде всего он просто сделал шифраторы съемными и взаимозаменяемыми. Так, к примеру, первый шифрующий диск мог бы быть установлен на место третьего диска, а третий шифрующий диск — на место первого. Расположение шифраторов влияет на процесс шифрования, поэтому точное расположение важно для зашифровывания и расшифровывания. Имеется шесть различных способов, которыми можно разместить три шифратора, так что число ключей, или количество возможных начальных установок, возрастает в шесть раз.
Кроме того между клавиатурой и первым шифратором он установил штепсельную коммутационную панель. Штепсельная коммутационная панель дает возможность отправителю вставлять кабели, благодаря которым отдельные буквы, перед тем как попасть в шифратор, меняются местами. Например, кабелем можно было соединить гнезда а и b штепсельной коммутационной панели, так что когда криптограф хочет зашифровать букву b, то электрический сигнал в действительности проходит через шифраторы по пути, по которому прежде шел сигнал от буквы а, и наоборот.
У оператора «Энигмы» имелось шесть кабелей, то есть можно было осуществлять перестановку букв в шести парах букв. Переставляемые с помощью штепсельной коммутационной панели буквы являются частью задаваемой начальной установки машины и поэтому должны быть оговорены в шифровальной книге. На рисунке 37 схематично показана компоновка машины с установленной штепсельной коммутационной панелью. Поскольку здесь используется шестибуквенный алфавит, перестановка проводится только для одной пары букв, а и b.
Рис. 37 Штепсельная коммутационная панель устанавливается между клавиатурой и первым шифратором. Вставляя кабели, можно переставлять местами пары букв; в нашем случае b меняется местами с а. Теперь зашифровывание b производится по пути, по которому прежде происходило зашифровывание а. При работе на реальной «Энигме», использующей алфавит с 26 буквами, у пользователя имелось шесть кабелей, позволяющих осуществлять перестановку в шести парах букв.
В конструкции машины Шербиуса применяется также кольцо, о котором пока не упоминалось. Хотя кольцо оказывает определенное влияние на процесс шифрования, но это наименее значимая часть «Энигмы», и я решил его здесь не рассматривать. (Читателям, кто хочет узнать о роли кольца, следует обратиться к книгам, приведенным в списке для дальнейшего чтения, например, «Захват Энигмы» Дэвида Кана. Там же указаны и адреса двух веб-сайтов с прекрасными эмуляторами «Энигмы», которые дадут вам возможность поработать с виртуальной «Энигмой»).
Теперь, когда мы познакомились со всеми основными элементами машины «Энигма» Шербиуса, и, зная количество кабелей штепсельной коммутационной панели и количество возможных расположений и ориентации шифраторов, мы сможем определить число ключей.
Ниже перечислены все параметры машины и соответствующее число возможных состояний для каждого:
Ориентация шифраторов. Каждый из 3 шифраторов может быть установлен в одном из 26 положений. Таким образом всего имеется 26 х 26 х 26 начальных установок: 17 576
Расположения шифраторов. Три шифратора (1, 2 и 3) могут располагаться в любом порядке
из указанных ниже шести возможных: 123, 132, 213, 231, 312, 321. 6
Штепсельная коммутационная панель. Количество возможных способов соединений, с помощью которых осуществляются перестановки букв
в шести парах из 26 букв, огромно: 100 391 791 500
Полное число ключей. Полное число ключей получается перемножением этих трех чисел:
17 576 х 6 х 100 391 791 500 ~ 10 000 000 000 000 000
Если и отправитель, и получатель заранее оговорили установку кабельных соединениий на штепсельной коммутационной панели, порядок расположения шифраторов и их ориентацию — все эти параметры определяют ключ, — то они смогут без труда зашифровывать и расшифровывать сообщения. Однако противник, который не знает ключа, должен перебрать все ключи из 10 000 000 000 000 000 возможных, чтобы дешифровать перехваченный шифртекст. Но для выполнения такой работы упорному криптоаналитику, который сумел бы проверять один ключ за минуту, потребовалось бы времени больше, чем возраст Вселенной. (В действительности же, так как я не учитывал в этих подсчетах наличие колец, количество возможных ключей возрастет, а значит, для взлома «Энигмы» потребуется еще больше времени.)Поскольку, без сомнения, самый весомый вклад в увеличение числа ключей вносит штепсельная коммутационная панель, вас может удивить, отчего же Шербиус так беспокоился о шифраторах? Сама по себе эта панель не делает ничего, кроме как реализует одноалфавитный шифр замены, переставляя местами в парах всего лишь 12 букв. Проблема здесь заключается в том, что в процессе зашифровывания перестановка букв в парах остается неизменной, поэтому при использовании одной только этой панели получается шифртекст, который можно дешифровать с помощью частотного анализа. Шифраторы же обеспечивают создание меньшего числа ключей, но их расположение все время изменяется, что означает, что для получающегося шифртекста частотный аналйз использовать не удастся.