KnigaRead.com/

Рэймонд Смаллиан - Алиса в Стране Смекалки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Рэймонд Смаллиан, "Алиса в Стране Смекалки" бесплатно, без регистрации.
Перейти на страницу:

Итак, и в том и в другом случае первого братца зовут Труляля.

74. Пятый раунд (Оранжевое и пурпурное).

Первое утверждение первого братца согласуется с утверждением второго братца. Следовательно, братцы либо оба лгут, либо оба говорят правду. Значит, карты у них различных мастей (все тот же принцип!). Таким образом, верно, что по крайней мере одна карта пурпурной масти и первый братец говорит правду. Следовательно, его второе утверждение также истинно, поэтому его зовут Траляля. (Кроме того, у Траляля карта оранжевой масти, а у Труляля пурпурной.)

75. Шестой раунд (Оранжевое и пурпурное).

Братцы противоречат друг другу, поэтому один из них лжет, а другой говорит правду. Следовательно, карты у них (все тот же принцип!) должны быть различных мастей.

Значит, правду говорит первый братец (его утверждение истинно).

76. Кто есть кто?

На оборотной стороне знака начерчен либо квадрат, либо круг. Предположим, что начерчен квадрат. Тогда квадрат означает «да», а круг — «нет». Следовательно, второй братец отвечает на вопрос «нет», то есть лжет! Предположим теперь, что на оборотной стороне знака начерчен круг. Тогда круг означает «да» и второй братец отвечает на вопрос «да», то есть снова лжет, поскольку на оборотной стороне знака начерчен не квадрат!

Следовательно, второй брат солгал, поэтому его зовут Труляля.

77. О чем спросила Алиса?

Вопросов, которые удовлетворяли бы условиям задачи, можно придумать много. Простейший из тех, которые приходят мне в голову, такой: «Ваша карта красной масти?».

Какой бы знак ни был начерчен на оборотной стороне «знака», ответ должен означать «да» потому, что тот, у кого карта красной масти, всегда говорит правду и поэтому в ответ на заданный вопрос скажет «да», а тот, у кого карта черной масти, всегда лжет и поэтому скажет, будто у него карта красной масти. Следовательно, ответ второго братца означает «да». Предположим, что он ответит, нарисовав в воздухе квадрат. Тогда квадрат означает «да». Значит, приз у второго братца. Если же в ответ на вопрос он нарисует круг, то круг, а не квадрат означает «да». Значит, приз у первого братца.

Кратко можно сказать, что если второй братец нарисует в воздухе квадрат, то приз у него, а если круг, то приз у другого братца.

Глава 9

Во всех решениях этой главы A означает первого подсудимого, B — второго и C — третьего.

78. Кто виновен?

Из условий задачи известно, что виновный дал ложные показания. Если бы B был виновен, то он сказал бы правду, когда признал виновным себя. Следовательно, B не может быть виновным. Если бы A был виновен, то все трое подсудимых дали бы ложные показания (так как A обвинил B или C, которые оба невиновны; B признал виновным самого себя, а он невиновен, и C либо признал виновным самого себя, тогда как C невиновен, либо обвинил A, который также невиновен). Но поскольку известно, что не все подсудимые дали ложные показания, то A также не может быть виновен. Следовательно, виновен подсудимый C.

79. Второй отчет о судебном процессе.

О чем мог узнать Белый Король от Белого Рыцаря, что позволило ему установить виновного? Если бы Белый Рыцарь сообщил Белому Королю, что все трое подсудимых дали ложные показания, то Белый Король не мог бы найти виновного. Действительно, A мог быть виновен и обвинять B, а B и C могли обвинять друг друга (при этом все трое лгали бы); либо B мог быть виновен и обвинять C, а A и C могли обвинять друг друга (при этом все трое опять лгали бы); либо C мог быть виновен и обвинять A, а A и B могли обвинять друг друга. Следовательно, Белый Король не мог узнать от Белого Рыцаря, что все трое обвиняемых лгали на суде.

Мог бы Белый Король установить, кто виновен, если бы Белый Рыцарь сказал ему, что на суде лгали ровно двое из подсудимых, и указал тех, кто лгал? Нет. Предположим, например, что Белый Рыцарь сказал Белому Королю: «A говорил правду, B и C лгали». Тогда кем бы ни был тот, кого A назвал виновным, он должен был бы быть виновным (ведь A говорил правду), а B и C оба лгали и обвиняли A (или, быть может, B обвинял C, а C обвинял A). С другой стороны, A мог обвинять C, а подсудимые B и C могли бы обвинять A, тогда виновен был бы C. Таким образом, если бы A был единственным подсудимым, сказавшим на суде правду, то ни B, ни C не могли бы быть виновными. Аналогичным образом, если бы B был единственным подсудимым, сказавшим на суде правду, то ни A, ни C не могли бы быть виновными, а если бы правду на суде сказал только C, то ни A, ни B не могли бы быть виновными. Следовательно, если бы Белый Рыцарь сообщил Белому Королю, что на суде сказал правду только один из подсудимых (либо A, либо B, либо C), то Белый Король не смог бы установить виновного. Значит, Белый Рыцарь не говорил Белому Королю, что правду сказал на суде только один из подсудимых (либо A, либо B, либо C).

Мог Белый Рыцарь сообщить Белому Королю, что все трое подсудимых говорили на суде правду? Нет, это невозможно, так как виновный заведомо лгал (ведь он обвинял кого-то из двух других подсудимых, тогда как те были невиновны).

Остается единственно возможный вариант: на суде лгал ровно один подсудимый. Но если лгал ровно один подсудимый, то именно он и должен быть виновен, так как если бы солгал кто-нибудь из невиновных, то давших ложные показания было бы двое: один невиновный и виновный. Итак, Белый Король мог услышать от Белого Рыцаря один из трех вариантов.

Вариант 1. A лгал, B говорил правду, C говорил правду.

Вариант 2. A говорил правду, B лгал, C говорил правду.

Вариант 3. A говорил правду, B говорил правду, C лгал.

Теперь нам ясно, каким образом Белый Король узнал, кто был виновен, но каким образом мы можем установить, какой из трех вариантов Белый Рыцарь сообщил Белому Королю? Как известно, Шалтай-Болтай либо спросил Белого Рыцаря, были ли ложны показания двух подсудимых подряд, либо были ли истинны показания двух подсудимых подряд. Первый вопрос не имел бы смысла (так как из трех показаний только одно ложное), поскольку на него Белый Рыцарь ответил бы отрицательно и это не позволило бы Шалтаю-Болтаю установить, какой из трех вариантов был сообщен Белому Королю Белым Рыцарем. Значит, Шалтай-Болтай спросил, были ли истинны показания двух каких-нибудь подсудимых подряд. Если в ответ на его вопрос Белый Король сказал «да», то Шалтай-Болтай исключил бы вариант 2, но так и не смог бы установить виновного. Но раз Шалтай-Болтай определил, кто виновен, то это означает, что в ответ на его вопрос Белый Рыцарь ответил «нет». Такой ответ позволил Шалтаю-Болтаю понять, что вариант 2 единственно возможный. Следовательно, виновен подсудимый C.

80. Следующий судебный процесс.

Это очень простая задача. Так как A сказал правду и обвинил одного из двух других подсудимых, то либо B, либо C должен быть виновен. Следовательно, A невиновен. Если бы каждый из подсудимых обвинял не того, на кого он указал на самом деле, а другого, то B сказал бы правду. Так как мы знаем, что A невиновен, то на процессе B обвинил C. Следовательно, C виновен.

81. Судебный процесс, следующий за следующим.

Так как A говорил правду и обвинял либо B, либо C, то либо B, либо C виновен, а A невиновен. Белый Рыцарь сказал Белому Королю, что C либо лгал, либо говорил правду. Если бы Белому Королю было сказано, что C лгал, то Белый Король не мог бы установить, кто из трех подсудимых виновен, так как либо C мог быть виновным и ложно обвинять A (или B), либо B мог быть виновным и C мог ложно обвинять A. Таким образом, если известно, что C лгал, то не существует способа, позволяющего установить, кто виновен: B или C. С другой стороны, если известно, что C говорил правду, то он не мог обвинять A (поскольку тот невиновен). Следовательно, C обвинял B, а так как C говорил правду, B должен быть виновен. Таким образом, Бармаглот должен был сказать Белому Рыцарю, что C говорил правду. Тогда Белый Рыцарь смог бы установить, что виновным должен быть B.

82. Еще один судебный процесс.

Как и в предыдущей задаче, поскольку A говорил правду и обвинял одного из двух подсудимых, A должен быть невиновен. Если Белый Рыцарь узнал от Бармаглота, что C говорил правду, то без всякой дополнительной информации Белый Рыцарь знал бы, что B виновен (как мы видели в решении предыдущей задачи). Но, как известно, Белый Рыцарь не мог без дополнительной информации определить, кто из трех подсудимых виновен. Следовательно, Бармаглот должен был сказать ему, что C лгал. Затем Белый Рыцарь узнал, кого обвинял подсудимый C, и это позволило ему узнать, кто виновен. Если бы Белый Рыцарь узнал от Бармаглота, что C обвинял подсудимого A, то Белый Рыцарь не смог бы определить, кто виновен: B или C. Именно поэтому Белому Рыцарю так важно было услышать от Бармаглота, что C обвинял подсудимого B: это означало, что B должен быть невиновен (так как C лгал), а поскольку A также невиновен, то виновен должен быть C.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*