Александр Ивин - Логика. Учебное пособие. Издание 2-е
До XVII в., пока в науку не вошло окончательно понятие «сила», «некоторые формы предметов и по аналогии некоторые формы путей, описываемых предметами, считались, по существу, способными производить бесконечное движение. В самом деле, представим себе форму идеально правильного шара, положим этот шар на плоскость; теоретически он не может удержаться неподвижно и все время будет в движении. Это считалось следствием идеально круглой формой шара. Ибо чем ближе форма фигуры к шаровой, тем точнее будет выражение, что такой материальный шар любых размеров будет держаться на идеальной зеркальной плоскости на одном атоме, то есть будет больше способен к движению, менее устойчив. Идеально круглая форма, полагали тогда, по своей сущности способна поддерживать раз сообщенное движение. Этим путем объяснялось чрезвычайно быстрое вращение небесных сфер, эпициклов. Эти движения были единожды сообщены им божеством и затем продолжались века как свойство идеально шаровой формы». «Как далеки эти научные воззрения от современных, а между тем, по существу, это строго индуктивные построения, основанные на научном наблюдении. И даже в настоящее время в среде ученых-исследователей видим попытки возрождения, по существу, аналогичных воззрений».
Поспешное обобщение, т.е. обобщение без достаточных на то оснований, – обычная ошибка в индуктивных рассуждениях.
Индуктивные обобщения требуют определенной осмотрительности и осторожности. Многое здесь зависит от числа изученных случаев. Чем обширнее база индукции, тем более правдоподобным является индуктивное заключение. Важное значение имеет также разнообразие, разнотипность этих случаев.
Но наиболее существенным является анализ характера связей предметов и их признаков, доказательство неслучайности наблюдаемой регулярности, ее укорененности в сущности исследуемых объектов. Выявление причин, порождающих эту регулярность, позволяет дополнить чистую индукцию фрагментами дедуктивного рассуждения и тем самым усилить и укрепить ее.
Общие утверждения, и в частности научные законы, полученные индуктивным способом, не являются еще полноправными истинами. Им предстоит пройти длинный и сложный путь, пока из вероятностных предположений они превратятся в составные элементы научного знания.
Индукция находит приложение не только в сфере описательных утверждений, но и в области оценок, норм, советов и им подобных выражений.
Эмпирическое обоснование оценок и т.п. имеет иной смысл, чем в случае описательных высказываний. Оценки не могут поддерживаться ссылками на то, что дано в непосредственном опыте. Вместе с тем имеются такие способы обоснования оценок, которые в определенном отношении аналогичны способам обоснования описаний и которые можно поэтому назвать квазиэмпирическими. К ним относятся различные индуктивные рассуждения, среди посылок которых имеются оценки и заключение которых также является оценкой или подобным ей утверждением. В числе таких способов неполная индукция, аналогия, ссылка на образец, целевое обоснование (подтверждение) и др.
Ценности не даны человеку в опыте. Они говорят не о том, что есть в мире, а о том, что должно в нем быть, и их нельзя увидеть, услышать и т.п. Знание о ценностях не может быть эмпирическим, процедуры его получения могут лишь внешне походить на процедуры получения эмпирического знания.
Самым простым и вместе с тем ненадежным способом индуктивного обоснования оценок является неполная (популярная) индукция. Ее общая схема:
S1 должно быть Р.
S2 должно быть Р.
Sn должно быть Р.
Все S1, S2, …, Sn являются Р.
Все S должны быть Р.
Здесь первые п посылок являются оценками, последняя посылка представляет собой описательное утверждение; заключение – оценка. Например:
Суворов должен быть стойким и мужественным.
Наполеон должен быть стойким и мужественным.
Эйзенхауэр должен быть стойким и мужественным.
Суворов, Наполеон, Эйзенхауэр были полководцами.
Каждый полководец должен быть стойким и мужественным.
Наряду с неполной индукцией принято выделять в качестве особого вида индуктивного рассуждения полную индукцию. В ее посылках о каждом из предметов, входящих в рассматриваемое множество, утверждается, что он имеет определенное свойство. В заключении говорится, что все предметы данного множества обладают этим свойством.
К примеру, учитель, читая список учеников какого-то класса, убеждается, что каждый названный им присутствует. На этом основании учитель делает вывод, что присутствуют все ученики.
В полной индукции заключение необходимо, а не с некоторой вероятностью вытекает из посылок. Эта индукция является, таким образом, разновидностью дедуктивного умозаключения.
К дедукции относится и так называемая математическая индукция, широко используемая в математике.
Ф.Бэкон, положивший начало систематическому изучению индукции, весьма скептически относился к популярной индукции, опирающейся на простое перечисление подтверждающих примеров. Он писал: «Индукция, которая совершается путем простого перечисления, есть детская вещь, она дает шаткие заключения и подвергнута опасности со стороны противоречащих частностей, вынося решение большей частью на основании меньшего, чем следует, количества фактов, и притом только тех, которые имеются налицо».
Этой «детской вещи» Бэкон противопоставлял описанные им особые индуктивные принципы установления причинных связей. Он даже полагал, что предлагаемый им индуктивный путь открытия знаний, являющийся очень простой, чуть ли не механической процедурой, «…почти уравнивает дарования и мало что оставляет их превосходству…». Продолжая его мысль, можно сказать, что он надеялся едва ли не на создание особой «индуктивной машины». Вводя в такого рода вычислительную машину все предложения, относящиеся к наблюдениям, мы получали бы на выходе точную систему законов, объясняющих эти наблюдения.
Программа Бэкона была, разумеется, чистой утопией. Никакая «индуктивная машина», перерабатывающая факты в новые законы и теории, невозможна. Индукция, ведущая от частных утверждений к общим, дает только вероятное, а не достоверное знание.
Все это еще раз подтверждает простую в своей основе мысль: познание реального мира – всегда творчество. Стандартные правила, принципы и приемы, какими бы совершенными они ни были, не дают гарантии достоверности нового знания. Самое строгое следование им не предохраняет от ошибок и заблуждений.
Всякое открытие требует таланта и творчества. И даже само применение разнообразных приемов, в какой-то мере облегчающих путь к открытию, является творческим процессом.
«Перевернутые законы логики»
Высказывалось предположение, что все «перевернутые законы логики» могут быть отнесены к схемам индуктивного рассуждения. Под «перевернутыми законами» имеются в виду формулы, получаемые из имеющих форму импликации (условного высказывания) законов логики путем перемены мест основания и следствия. К примеру, если выражение:
«Если А и В, то А» есть закон логики, то выражение:
«Если А, то А и В»
есть схема индуктивного умозаключения. Аналогично для:
«Если А, то А или В» и схемы:
«Если А или В, то А».
Сходно для законов модальной логики. Поскольку выражения:
«Если А, то возможно А» и «Если необходимо А, то А» являются законами логики, то выражения:
«Если возможно А, то А» и «Если А, то необходимо А» являются схемами индуктивного рассуждения. Законов логики бесконечно много. Это означает, что и схем индуктивного рассуждения бесконечное число.
Предположение, что «перевернутые законы логики» представляют собой схемы индуктивного рассуждения, наталкивается, однако, на серьезные возражения: некоторые «перевернутые законы» остаются законами дедуктивной логики; ряд «перевернутых законов», при их истолковании как схем индукции, звучит весьма парадоксально. «Перевернутые законы логики» не исчерпывают, конечно, всех возможных схем индукции.
Косвенное подтверждение
В науке, да и не только в ней, непосредственное наблюдение того, о чем говорится в проверяемом утверждении, редкость.
Наиболее важным и вместе с тем универсальным способом подтверждения является выведение из обосновываемого положения логических следствий и их последующая проверка. Подтверждение следствий оценивается при этом как свидетельство в пользу истинности самого положения.
Вот два примера такого подтверждения.
Тот, кто ясно мыслит, ясно говорит. Пробным камнем ясного мышления является умение передать свои знания кому-то другому, возможно, далекому от обсуждаемого предмета. Если человек обладает таким умением и его речь ясна и убедительна, это можно считать подтверждением того, что его мышление также является ясным.
Известно, что сильно охлажденный предмет в теплом помещении покрывается капельками росы. Если мы видим, что у человека, вошедшего в дом, тут же запотели очки, мы можем с достаточной уверенностью заключить, что на улице морозно.