KnigaRead.com/

Александр Ивин - Логика. Учебное пособие. Издание 2-е

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Ивин, "Логика. Учебное пособие. Издание 2-е" бесплатно, без регистрации.
Перейти на страницу:

По способу проведения доказательства делятся на два вида. При прямом доказательстве задача состоит в том, чтобы найти такие убедительные аргументы, из которых логически вытекает тезис. Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противопоставляемого ему допущения, антитезиса.

Например, нужно доказать, что сумма углов четырехугольника равна 360°. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из этих положений выводим, что сумма углов четырехугольника равна 360°. Еще пример. Нужно доказать, что космические корабли подчиняются действию законов космической механики. Известно, что эти законы универсальны: им подчиняются все тела в любых точках космического пространства. Очевидно также, что космический корабль есть космическое тело. Отметив это, строим соответствующее дедуктивное умозаключение. Оно является прямым доказательством рассматриваемого утверждения.

В косвенном доказательстве рассуждение идет как бы окольным путем. Вместо того чтобы прямо отыскивать аргументы для выведения из них доказываемого положения, формулируется антитезис, отрицание этого положения. Далее тем или иным способом показывается несостоятельность антитезиса. По закону исключенного третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным.

Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является как говорят, доказательством от противного.

Допустим, нужно построить косвенное доказательство такого весьма тривиального тезиса: «Квадрат не является окружностью», Выдвигается антитезис: «Квадрат есть окружность», Необходимо показать ложность данного утверждения. С этой целью выводим из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверным является, в частности, такое следствие: у квадрата нет углов. Поскольку антитезис ложен, исходный тезис должен быть истинным.

Другой пример. Врач, убеждая пациента, что тот не болен гриппом, рассуждает так. Если бы действительно был грипп, имелись бы характерные для него симптомы: головная боль, повышенная температура и т.п. Но ничего подобного нет. Значит, нет и гриппа.

Это опять-таки косвенное доказательство. Вместо прямого обоснования тезиса выдвигается антитезис, что у пациента в самом деле грипп. Из антитезиса выводятся следствия, но они опровергаются объективными данными. Это говорит, что допущение о гриппе неверно. Отсюда следует, что тезис «Гриппа нет» истинен.

Доказательства от противного обычны в наших рассуждениях, особенно в споре. При умелом применении они могут обладать особенной убедительностью.

Определение понятия доказательства включает два центральных понятия логики: понятие истины и понятие логического следования. Оба эти понятия не являются ясными, и, значит, определяемое через них понятие доказательства также не может быть отнесено к ясным.

Многие утверждения не являются ни истинными, ни ложными, лежат вне «категории истины», Оценки, нормы, советы, декларации, клятвы, обещания и т.п. не описывают каких-то ситуаций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описания требуется, чтобы оно соответствовало действительности. Удачный совет (приказ и т.п.) характеризуется как эффективный или целесообразный, но не как истинный. Высказывание, «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипятите воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что, оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным, и доказательным. Встает, таким образом, вопрос о существенном расширении понятия доказательства, определяемого в терминах истины. Им должны охватываться не только описания, но и оценки, нормы и т.п. Задача переопределения доказательства пока не решена ни логикой оценок, ни деонтической (нормативной) логикой. Это делает понятие доказательства не вполне ясным по своему смыслу.

Не существует, далее, единого понятия логического следования. Логических систем, претендующих на определение этого понятия, в принципе существует бесконечное множество. Ни одно из имеющихся в современной логики определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования».

Образцом доказательства, которому в той или иной мере стремятся следовать во всех науках, является математическое доказательство. Долгое время считалось, что оно представляет собой ясный и бесспорный процесс. В нашем веке отношение к математическому доказательству изменилось. Сами математики разбились на враждебные группировки, каждая из которых придерживается своего истолкования доказательства. Причиной этого послужило прежде всего изменение представлений о лежащих в основе доказательства логических принципах. Исчезла уверенность в их единственности и непогрешимости. Логицизм был убежден, что логики достаточно для обоснования всей математики; по мнению формалистов (Д.Гильберт и др.), одной лишь логики для этого недостаточно и логические аксиомы необходимо дополнить собственно математическими; представители теоретико-множественного направления не особенно интересовались логическими принципами и не всегда указывали их в явном виде; интуиционисты из принципиальных соображений считали нужным вообще не вдаваться в логику. Полемика по поводу математического доказательства показала, что нет критериев доказательства, не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто использует критерии. Математическое доказательство является парадигмой доказательства вообще, но даже в математике доказательство не является абсолютным и окончательным.

2. Разновидности индукции

В индуктивном умозаключении связь посылок и заключения не опирается на логический закон, и заключение вытекает из принятых посылок не с логической необходимостью, а только с некоторой вероятностью. Индукция может давать из истинных посылок ложное заключение; ее заключение может содержать информацию, отсутствующую в посылках. Понятие индукции (индуктивного умозаключения) не является вполне ясным. Индукция определяется, в сущности, как «недедукция» и представляет собой еще менее ясное понятие, чем дедукция. Можно тем не менее указать относительно твердое «ядро» индуктивных способов рассуждения. В него входят, в частности, неполная индукция, так называемые перевернутые законы логики, подтверждение следствий, целевое обоснование и подтверждение общего положения с помощью примера. Типичным примером индуктивного рассуждения является также аналогия.


Неполная индукция

Индуктивное умозаключение, результатом которого является общий вывод о всем классе предметов на основании знания лишь некоторых предметов данного класса, принято называть неполной, или популярной, индукцией.

Например, из того, что инертные газы гелий, неон и аргон имеют валентность, равную нулю, можно сделать общий вывод, что все инертные газы имеют эту же валентность. Это неполная индукция, поскольку знание о трех инертных газах распространяется на все такие газы, включая не рассматривавшиеся специально криптон и ксенон.

Иногда перечисление является достаточно обширным и тем не менее опирающееся на него обобщение оказывается ошибочным.

«Алюминий – твердое тело; железо, медь, цинк, серебро, платина, золото, никель, барий, калий, свинец – также твердые тела; следовательно, все металлы – твердые тела», Но этот вывод ложен, поскольку ртуть – единственный из всех металлов – жидкость.

Много интересных примеров, поспешных обобщений, встречавшихся в истории науки, приводит в своих работах русский ученый В.И.Вернадский.

До XVII в., пока в науку не вошло окончательно понятие «сила», «некоторые формы предметов и по аналогии некоторые формы путей, описываемых предметами, считались, по существу, способными производить бесконечное движение. В самом деле, представим себе форму идеально правильного шара, положим этот шар на плоскость; теоретически он не может удержаться неподвижно и все время будет в движении. Это считалось следствием идеально круглой формой шара. Ибо чем ближе форма фигуры к шаровой, тем точнее будет выражение, что такой материальный шар любых размеров будет держаться на идеальной зеркальной плоскости на одном атоме, то есть будет больше способен к движению, менее устойчив. Идеально круглая форма, полагали тогда, по своей сущности способна поддерживать раз сообщенное движение. Этим путем объяснялось чрезвычайно быстрое вращение небесных сфер, эпициклов. Эти движения были единожды сообщены им божеством и затем продолжались века как свойство идеально шаровой формы». «Как далеки эти научные воззрения от современных, а между тем, по существу, это строго индуктивные построения, основанные на научном наблюдении. И даже в настоящее время в среде ученых-исследователей видим попытки возрождения, по существу, аналогичных воззрений».

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*