Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью
Очевидно, что многие детали байесовской теории довольно сложны. Но как я уже говорил, во время анализа задачи про двух дочерей я использовал новые данные для «урезания» пространства элементарных событий и соответственной выверки вероятностей. В задаче с двумя дочерьми пространство элементарных событий изначально было таким: (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка), однако оно сокращается до следующих параметров: (мальчик, девочка), (девочка, мальчик), (девочка, девочка), если вы узнаете, что один из детей — девочка, что шансы на семью из двух девочек составляют 1 из 3. Попробуем применить эту несложную стратегию и посмотрим, что выйдет при условии, если вам станет известно следующее: один из детей — девочка по имени Флорида.
В задаче про девочку по имени Флорида нас интересует помимо пола детей еще и имя, поскольку речь о девочках. Наше первоначальное пространство элементарных событий должно включать в себя все вероятности, поэтому список содержит и пол, и имя. Обозначим девочку по имени Флорида как «девочка Ф», а девочку по имени не Флорида как «девочка не Ф». Обозначим пространство элементарных событий: (мальчик, мальчик), (мальчик, девочка Ф.), (мальчик, девочка не Ф.), (девочка Ф., мальчик), (девочка не Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.), (девочка не Ф., девочка не Ф.), (девочка Ф., девочка Ф.).
Ну а теперь «урежем». Так как нам известно, что один из детей — девочка по имени Флорида, можно сократить пространство элементарных событий: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка Ф.). Теперь видно, чем еще эта задача отличается от задачи про двух дочерей. Поскольку утверждения, что девочку зовут Флорида и девочку зовут не Флорида, нельзя назвать равновероятными, не являются таковыми и все элементы пространства элементарных событий.
В 1935, последнем году, за который Управление социальным обеспечением предоставило статистику в отношении имени, около 1 из 30 000 девочек были наречены именем Флорида{106}. Поскольку имя становилось все менее популярным, предположим, что сегодня вероятность появления девочки по имени Флорида равна 1 из 1 млн. Это значит следующее: если нам станет известно, что определенную из двух девочку зовут не Флорида, ничего страшного, однако если мы узнаем, что ее зовут Флорида, можно сказать, что мы попали в точку. Вероятность того, что обеих девочек назовут именем Флорида (даже если мы проигнорируем тот факт, что обычно родители избегают давать детям одинаковые имена), настолько мала, что можно спокойно ею пренебречь. Итак, вот что у нас остается: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.). Все эти события в весьма хорошем приближении равновозможны.
Поскольку 2 из 4, то есть половина элементов пространства элементарных событий являются семьями с двумя девочками, ответом не может быть 1 из 3 — как это было в задаче с двумя дочерьми, — ответом является 1 из 2. Все дело в дополнительной информации — осведомленности насчет имени девочки.
Если вы по-прежнему теряетесь в догадках, то можно представить себе следующее: в очень-очень большой комнате мы собираем 75 млн семей с двумя детьми, из которых хотя бы один ребенок — девочка. Как нам стало известно из задачи с двумя дочерьми, в комнате окажется около 25 млн семей с двумя девочками и 50 млн семей с одной девочкой (25 млн семей, в которых девочка является старшим ребенком, и столько же семей, в которых девочка является младшим ребенком). Далее «урезаем»: просим остаться в комнате только те семьи, в которых есть девочки по имени Флорида. Поскольку Флорида — 1 имя на 1 млн имен, останутся около 50 из 50 млн семей с одной девочкой. А из 25 млн семей с двумя девочками 50 тоже останутся: 25 потому, что их первый ребенок назван по имени Флорида, другие 25 потому, что их младшая дочь названа Флоридой. В этом примере всех девочек можно представить как лотерейные билеты; в таком случае девочки по имени Флорида станут выигрышными билетами. И хотя семей, в которых один из двух детей — девочка, в два раза больше, чем семей, в которых оба ребенка — девочки, семьи с двумя девочками обладают двумя лотерейными билетами, поэтому среди выигравших будет примерно одинаковое соотношение семей с одной девочкой и семей с двумя девочками.
В теории я расписал задачу про девочку по имени Флорида уж очень подробно, до такой степени, что иногда из-за этого моего пристрастия к деталям меня не приглашают на свои дружеские посиделки соседи. Но я поступил так не потому, что ожидал от вас того же самого, что и от своих соседей. Дело в том, что контекст прост, а аналогичный ход рассуждений прояснит многие ситуации, реальные для нашей повседневной жизни. Давайте поговорим о них.
Лично я наиболее яркими воспоминаниями, связанными с преподобным Байесом, обязан одной из пятниц 1989 г.: в тот день позвонил лечащий врач и сообщил, что жить мне осталось от силы лет десять, причем вероятность этого прогноза равна 999 из 1 000. Он еще прибавил: «Мне действительно очень жаль», как будто у него бывали пациенты, которым он говорил о своем сожалении, но на самом деле ничего подобного к ним не испытывал. Далее врач ответил на кое-какие вопросы относительно протекания болезни, после чего повесил трубку: видимо, торопился сообщить очередному пациенту крайне важную для того новость. Тяжело говорить, даже вспоминать о том, что я пережил за субботу и воскресенье, скажу только, что ни в какой Диснейленд я не поехал. Но раз мне был вынесен смертный приговор, почему я все еще жив, почему сижу и пишу об этом?
А началось все с того, что мы с женой решили застраховаться. В заявлении говорилось, что мы должны предоставить результаты анализа крови. Через неделю-две нам отказали в страховании. Крайне экономная страховая компания выслала нам два коротеньких извещения, которые были одинаковы, только текст в извещении на имя жены оказался на одно слово длиннее, чем текст в извещении на мое имя. В моем извещении говорилось, что компания отказывает мне в страховании на основании «результатов Вашего анализа крови». В извещении для моей жены говорилось, что компания не может застраховать ее жизнь на основании «результатов анализа крови Вашего мужа». Когда выяснилось, что в этом самом слове, «муж», и кроется разгадка того, почему добросердечные страховщики отказывают нам в страховании, я, действуя интуитивно, пошел к врачу и сдал анализ на ВИЧ. Результаты оказались положительными. И хотя я поначалу был слишком потрясен, чтобы поинтересоваться у врача о высказанной им вероятности, позднее мне стало известно, что он вычислил мой 1 из 1 000 шанс на жизнь из следующих статистических данных: лишь в 1 случае из 1 000 анализ на ВИЧ может дать положительный результат, пусть даже кровь при этом и не заражена вирусом СПИДа. Может показаться, что врач сказал то же самое, однако это не так. Врач перепутал вероятность того, что результаты моего анализа будут положительными, если я не являюсь ВИЧ-инфицированным, с вероятностью того, что я могу и не быть ВИЧ-инфицированным, даже если результаты моего анализа окажутся положительными.
Чтобы разобраться, где ошибся врач, прибегнем к методу Байеса. Первым делом очертим пространство элементарных событий. Можно включить в него всех, кто когда-либо сдавал анализы на ВИЧ, но мы получим более точные результаты, если примем во внимание некоторые дополнительные, имеющие непосредственное отношение к теме сведения обо мне: рассмотрим только гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, которые сдавали анализы на ВИЧ. (Далее мы увидим, какое это имеет значение.)
Теперь, когда мы знаем, кого следует включить в пространство элементарных событий, распределим членов этого пространства по категориям. Вместо деления на мальчиков и девочек выберем деление на тех, кто у кого анализы оказались ВИЧ-положительными и кто ВИЧ-положителен (истинная положительность), тех, у кого анализы оказались положительными, но кто на самом деле не положителен (ложная положительность), тех, у кого анализы оказались ВИЧ-отрицательными и кто ВИЧ-отрицателен (истинная отрицательность), тех, у кого анализы оказались ВИЧ-отрицательными, но кто на самом деле ВИЧ-положителен (ложная отрицательность).
Наконец задаем вопрос: сколько людей в каждой из этих категорий? Предположим, мы рассматриваем изначально население из 10 000 человек. Пользуясь статистическими данными Центра по контролю и профилактике заболеваемости, подсчитаем, что в 1989 г. около 1 из 10 000 гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, сдавших анализы, оказались ВИЧ-инфицированными{107}. Предположим, что в категории «ложная отрицательность» показатель равен 0, тогда около 1 человека из каждых 10 000 сдавших анализы окажется положительным из-за наличия инфекции. К тому же поскольку показатель «ложной отрицательности» равен, по словам врача, 1 из 1 000, наберется около 10 тех, кто не заражен ВИЧ, однако анализы которых тем не менее окажутся положительными. У остальных 9 989 человек из 10 000, составляющих пространство элементарных событий, результаты анализов окажутся отрицательными.