KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Артур Бенджамин - Магия математики: Как найти x и зачем это нужно". Жанр: Прочая научная литература издательство -, год -.
Перейти на страницу:

Эта закономерность может привести нас к другой, еще более красивой. Раз уж мы хотим заставить числа танцевать, почему бы не сделать это и с их квадратами?

Взгляните вот на такую пирамидку уравнений:

Какую закономерность вы видите? Подсчитать количество чисел в каждом ряду несложно: 3, 5, 7, 9, 11 и так далее. А дальше неожиданность: первое число каждого ряда – по крайней мере, первых 5 записанных здесь рядов – является квадратом числа. И правда: 1, 4, 9, 16, 25… Почему так получается? Возьмем пятый ряд. Сколько чисел ему предшествуют? Давайте сложим их количество: 3 + 5 + 7 + 9. Прибавим к ним еще единицу, и у нас получится первое число пятого ряда – сумма первых 5 нечетных чисел, которая, как мы уже знаем, равна 5².

А теперь просчитаем пятое уравнение, ничего к нему не добавляя. Как бы это сделал Гаусс? Если пока не обращать внимания на начальное 25, слева у нас останется 5 чисел, каждое из которых будет ровно на 5 меньше, чем соответствующее ему число справа.

То есть сумма чисел справа будет ровно на 25 больше суммы чисел слева. Но это без учета 25, которые стоят в начале. А с ними у нас получается именно тот результат, который обещан нам знаком равенства. Следуя той же логике и призвав на помощь алгебру, мы докажем, что этот ряд можно продолжать бесконечно.

Отступление

А теперь – специально для тех, кто хотел немного алгебры. Ряду n предшествует количество чисел, равное 3 + 5 + 7 +… + (2n – 1) = n² – 1, поэтому левая сторона нашего уравнения должна начинаться с числа n², за которым следует n последовательных чисел, от n² + 1 до n² + n. Справа – n последовательных чисел, начиная с n² + n + 1, заканчивая n² + 2n. Если мы временно «забудем» про число n² слева, то увидим, что каждое из n чисел справа на n больше, чем соответствующее ему последовательное число слева. Разница при этом составляет n × n, то есть n². Закономерность эта компенсируется начальным n² слева, поэтому-то левая и правая части и равны.

Перейдем к другой закономерности. Как мы уже видели, из нечетных чисел можно составлять квадраты. А теперь посмотрим, что произойдет, если собрать их в один большой треугольник – вроде того, что изображен чуть ниже.

Так отлично видно, что 3 + 5 = 8, а 7 + 9 + 11 = 27, а 13 + 15 + 17 + 19 = 64. Что общего у 1, 8, 27 и 64? Да это же полные кубы чисел! Например, если сложить между собой пять чисел пятого ряда, мы получим:

21 + 23 + 25 + 27 + 29 = 125 = 5 × 5 × 5 = 5³

Логика вроде бы подсказывает, что сумма чисел в ряду n будет равна n³. Но насколько верным будет этот вывод? Не простое ли это совпадение? Чтобы лучше понять эту закономерность, посмотрим на числа в середине 1, 3 и 5 рядов. Что мы видим? 1, 9 и 25. То есть квадраты. В середине 2 и 4 рядов чисел нет, но по сторонам центра 2 ряда видим числа 3 и 5, среднее арифметическое которых – 4, а по сторонам центра 4 ряда – 15 и 17 со средним арифметическим 16. Давайте подумаем, как эту закономерность можно использовать.

Снова возьмем 4 ряд. Что мы тут видим? А видим мы, что сумма всех чисел в нем есть 5³ – и не нужно к ним ничего добавлять, чтобы заметить: все они симметрично расположены вокруг 25. Так как среднее арифметическое этих чисел – 5², уравнение преобразуется в 5² + 5² + 5² + 5² + 5² = 5 × 5², то есть 5³. То же справедливо и в отношении 4 ряда: среднее арифметическое всех чисел в нем – 4², их сумма – 4³. Чуть-чуть алгебры (к которой мы здесь не прибегаем), и вы легко сделаете вывод, что среднее арифметическое n чисел ряда n равно n², а их сумма равна n³, что и требовалось доказать.

Кстати, если уж мы взялись оперировать квадратами и кубами, не могу удержаться, чтобы не указать вам на еще одну закономерность. Что получится, если сложить кубы чисел, начиная с 1³?

Подсчитывая сумму кубов, мы получаем 1, 9, 36, 100, 225 и т. д. – числа, которые являются полными квадратами. Но это не любые квадраты, а квадраты 1, 3, 6, 10, 15 и т. д. – треугольных чисел! Мы уже знаем, что они по своей сути являются суммами простых чисел, а значит,

1³ + 2³ + 3³ + 4³ + 5³ = 225 = 15² = (1 + 2 + 3 + 4 + 5)²

Другими словами, сумма кубов первых n чисел есть квадрат суммы этих самых первых n чисел. Подтвердить это мы пока не можем, но в главе 6 пару доказательств увидим.

Как быстро считать в уме

Среди читателей наверняка найдутся те, кто, познакомившись с этими примерами, скажет: «Ух ты, здо́рово! Но какая от всего этого польза?» Здесь в любом математике проснулся бы художник, и в ответ вы услышали бы: «Разве нужно красоте оправдание иное, нежели сама красота?» Ведь чем лучше мы понимаем числовые закономерности, тем глубже постигаем их красоту. И все-таки иногда они приносят практическую пользу.

Вот простая закономерность, которую мне посчастливилось обнаружить в юности (даже если я и не был первооткрывателем). Я смотрел на пары чисел, которые в сумме давали 20 (10 и 10, например, или 9 и 11), и думал, а какие из них надо перемножить, чтобы получить наибольшее произведение? Логика подсказывала, что это 10 на 10, и моя схема эта подтвердила.

Эта закономерность была несомненна. Чем дальше отстояли друг от друга числа, тем меньше становилось произведение. И насколько они отдалялись от 100? На 1, на 4, на 9, 16, 25… То есть на 1², 2², 3², 4², 5² и т. д. А потом мне стало интересно, работает ли эта закономерность для чисел, дающих другую сумму. Я решил попробовать 26:

И я снова увидел, что наибольшее произведение дало умножение двух одинаковых чисел. А потом произведение стало уменьшаться с интервалом сначала 1, потом 4, потом 9 и т. д. Еще несколько подобных примеров убедили меня, что закономерность была строгой (ее алгебраическое выражение я покажу чуть позже). Выяснил я и то, что ее можно применять для быстрого возведения чисел в квадрат.

Допустим, нам нужно знать квадрат 13. Вместо того чтобы умножать 13 × 13, можно сделать умножение попроще: 10 × 16 = 160. До правильного ответа уже рукой подать, и чтобы его получить, достаточно будет прибавить возведенное в квадрат 3 – число, составляющее разницу между 13 и числами, которые мы перемножили. То есть:

13² = 10 × 16 + 3² = 160 + 9 = 169

Можно взять еще один пример, скажем, 98 × 98. Для удобства к первому числу добавим 2 до 100, а от второго отнимем 2 до 96. Значит, к их произведению нужно будет прибавить 2². Вот наше уравнение:

98²= 100 × 96 + 2² = 9600 + 4 = 9604

Особенно легко применять эту схему к числам, которые заканчиваются на 5: если уменьшить и увеличить их на 5, оперировать придется круглыми числами. Например:

35² = 30 × 40 + 5² = 1200 + 25 = 122555² = 50 × 60 +5² = 3000 + 25 = 302585² = 80 × 90 + 5² = 7200 + 25 = 7225

Теперь попробуем возвести в уме в квадрат 59. Увеличив и уменьшив это число на единицу, получим 59² = (60 × 58) + 1². Но как умножить в уме 60 на 58? Простой совет из двух слов: слева направо. Забудем на время про 0 и подсчитаем 6 × 58: 6 × 50 = 300 и 6 × 8 = 48. Потом сложим эти два результата (опять же, слева направо) и получим 348. И добавим ноль в конце, то есть 60 × 58 = 3480. Поэтому:

59² = 60 × 58 + 1² = 3480 + 1 = 3481Отступление

А вот алгебраическое доказательство этого метода (перечитайте это отступление после того, как во второй главе мы поговорим о разнице квадратов):

А² = (A + d) (Ad) + d²

где A – число, возводимое в квадрат, d – разность с ближайшим круглым числом (формула, кстати, справедлива для любого d). Для примера возведем в квадрат 59: А = 59, d = 1, значит, формула превращается в (59 + 1) × (59 – 1) + 1², как и в предыдущем вычислении.

Теперь, когда вы профессионально возводите в квадрат двузначные числа, можно попробовать и трехзначные. Если помните, 12² = 144, значит:

112² = (100 × 124) + 12² = 12 400 + 144 = 12 544

Есть еще одна подобная формула, которая работает для любых двух чисел, близких к сотне. Человек, который становится случайным свидетелем таких вычислений, испытывает чувство, будто наблюдает за трюком фокусника. Вот, например, 104 × 109. Рядом с каждым из них пишем число, на которое оно превышает сотню (см. пример ниже). В левом столбце сложим первое число со второй разностью и запишем результат: 104 + 9 = 113. В правом столбце перемножим две разности: 4 × 9 = 36. «Соединим» эти числа, то есть запишем их одно за другим и – тадам! – волшебным образом получим ответ: 11 336.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*