KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Айзек Азимов - О времени, пространстве и других вещах. От египетских календарей до квантовой физики

Айзек Азимов - О времени, пространстве и других вещах. От египетских календарей до квантовой физики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "О времени, пространстве и других вещах. От египетских календарей до квантовой физики" бесплатно, без регистрации.
Перейти на страницу:

На расстоянии 30 световых лет видимая яркость такой сверхновой уменьшится на 15 звездных величин и составит -2. Такова яркость Юпитера.

Числа воистину удивительны! На расстоянии галактического ядра ни одна обычная звезда не может быть видна невооруженным глазом. Сто миллиардов звезд, составляющих ядро, создают при нормальных условиях только слабо светящуюся дымку. Если отдельная звезда на таком расстоянии достигает видимой яркости Юпитера — это уму непостижимо! Сила света такой сверхновой составляет х/ю часть силы света целой невзрывающейся галактики, такой, как наша.

И все же маловероятно, что каждая образующаяся сверхновая звезда будет иметь максимальную яркость. Давайте будем консервативными и допустим, что яркость сверхновой будет в среднем на две звездных величины ниже максимума. Тогда это будет 0, то же самое можно сказать о звезде Арктура.

И тем не менее, «небесные огни» — явление далеко не ординарное. Если бы человечество имело возможность наблюдать подобные зрелища на ранних этапах развития цивилизации, оно никогда не совершило бы ошибку, считая небеса чем-то незыблемым. А астрономия могла получить ускоренное развитие.

Увы, мы не можем видеть галактическое ядро. Но что может нам помочь его представить? Быть может, существует что-нибудь, отдаленно напоминающее нарисованную мною картину?

Что ж, одна возможность действительно есть. В нашей Галактике то здесь, то там встречаются шаровидные скопления. Подсчитано, что их существует около 200. (Около сотни таких скоплений в нашей Галактике можно наблюдать, еще сотня, по всей видимости, скрыта облаками пыли.)

Эти шаровидные скопления напоминают обособленные кусочки галактического ядра, имеют около 100 световых лет в диаметре и содержат от 100 000 до 10 000 000 звезд, симметрично разбросанных вокруг центра.

Самое крупное из известных шаровидных скоплений носит имя Геркулеса и следует в упомянутом ранее списке под индексом М13, но оно не самое близкое. Значительно ближе находится омега Центавра, до которой от нас 22 000 световых лет. Она отчетливо видна невооруженным глазом и является объектом пятой звездной величины. Для невооруженного глаза она представляет собой небольшое пятно света, поскольку на таком расстоянии даже диаметр 100 световых лет виден дугой всего лишь в 1,5 минуты.

Пусть омега Центавра содержит 10 000 предсверхновых и каждая из них взрывается при первой возможности. В небе появятся огни, однако в течение короткого промежутка времени, и сами они будут в два раза ярче.

Это был бы идеальный взрыв во всех отношениях: его не закроют пылевые облака, он не слишком мощный, а значит, безопасный, но все же достаточно мощный, чтобы стать захватывающим зрелищем.

Однако наши шансы увидеть взрыв в омеге Центавра можно считать нулевыми. А если бы это произошло, омегу Центавра нельзя увидеть из Новой Англии, и мне пришлось бы совершить долгое путешествие на юг, чтобы получить возможность наблюдать это зрелище во всей красе. А я не люблю путешествовать.

Быть может, лучше пойти поглазеть на пожар в соседском доме?

Часть вторая О ДРУГИХ ВЕЩАХ

Глава 11 ЗАБУДЬТЕ ОБ ЭТОМ!

Недавно[8] я просматривал новый учебник по биологии («Биологическая наука»: взгляд на жизнь, написанный коллективом именитых авторов и опубликованный в 1963 году). Мне он показался очень занимательным.

К несчастью, вначале я прочел предисловие (да, я принадлежу именно к такой категории людей), которое повергло меня в глубочайшее уныние. Позвольте мне привести выдержки из первых двух параграфов:

«С каждым новым поколением наш багаж научных знаний увеличивается в 5 раз… В настоящее время имеется в 4 раза больше важнейших знаний по биологии, чем в 1930 году, и в 16 раз больше, чем в 1900 году. При существующей скорости накопления знаний к 2000 году вводный курс биологии будет содержать в 100 раз больше информации, чем в начале века».

Представляете, какое это произвело на меня впечатление? Всю свою сознательную жизнь я стремился идти в ногу с наукой, а в отдельные моменты считал, что мне это удается, причем весьма неплохо.

Но потом мне на глаза попадается нечто подобное, и мир начинает рушиться! Оказывается, я вовсе не иду в ногу с наукой. Хуже того, я от нее безнадежно отстал! И с каждым днем отстаю все больше!

Наконец, я перестаю жалеть себя, неспособного поспевать за прогрессом, и начинаю думать о жизни вообще. Что происходит с Homo sapiens? Похоже, человечество не собирается отказываться от привычки приукрашивать факты и манипулировать ими. В недалеком будущем нам всем грозит смерть от злокачественного образования. Клетки нашего мозга начнут одна за другой отмирать от несварения бесчисленных фактов и концепций, а те, что уцелеют, окажутся погребенными под обломками информационных взрывов.

Но затем мне повезло. На следующий день после «Биологической науки» мне на глаза попалась старая книга под названием «Арифметика Пайка». Заглавие на титульном листе было куда более информативным (в те дни к заголовкам относились намного серьезнее). Оно гласило: «Новая и полная система арифметики, составленная для использования гражданами Соединенных Штатов Николасом Пайком». Впервые эта книга была опубликована в 1785 году, но у меня было ее второе издание, расширенное и дополненное, увидевшее свет в 1797 году.

В этой книге оказалось более 500 страниц, исписанных мелким шрифтом, без иллюстраций или диаграмм. Вся она была посвящена арифметике, лишь небольшие разделы в самом конце являлись введением в алгебру и геометрию.

Я был чрезвычайно заинтересован. Все-таки у меня есть двое детей школьного возраста, да и сам я когда-то учился в школе и знаю, что представляют собой книги но арифметике. Во-первых, все они не такие объемные, а во-вторых, в них не содержится и пятой части словесного материала, имеющегося у Пайка.

Возможно, мы что-то упустили?

Я внимательно проштудировал Пайка и теперь не сомневаюсь, что мы действительно кое-что обходим молчанием. Но в этом нет ничего плохого. Беда в том, что мы умалчиваем недостаточно.

Так, на странице 19 Пайк увлеченно перечисляет римские числительные, доведя их перечень до полумиллиона.

Начиная со времен Средневековья в Европе используются арабские цифры, с их появлением римские лишились своего значения. А до тех пор кто знает, сколько бумаги приходилось изводить, чтобы довести до сведения желающих методы расчетов с использованием римских цифр? Собственно говоря, с переходом на другие цифры методы расчетов остались прежними, только выполнять их стало гораздо легче, и объяснений требуется только сотая часть. Знания не утрачены, в прошлом остались лишь неэффективные правила.

Но спустя 500 лет после заслуженной смерти римских числительных Пайк снова включает их в учебное пособие и ожидает, что читатели смогут переводить их в арабские и обратно, хотя не дает никаких инструкций о том, как ими манипулировать. Между прочим, почти через 200 лет после Пайка римские числительные все еще изучаются! Моя маленькая дочь сейчас как раз занимается этим.

Но зачем? Конечно, римские цифры все еще встречаются на некоторых указателях, могильных плитах, на циферблатах часов, они иногда украшают фасады зданий, но ведь в этом нет никакой необходимости! Это делается для того, чтобы произвести впечатление, придать больше значимости, солидности, античный колорит. И больше ничего.

Осмелюсь предположить, что существуют сентиментальные личности, искренне уверенные, что знание римских числительных является своеобразными воротами в мир высокой культуры, а умение обращаться с ними сродни прикосновению к руинам Парфенона, но меня такой подход чрезвычайно раздражает.

Римские числительные? Забудьте о них. Лучше освободите место для новых, ценных знаний.

Но разве мы можем позволить себе забывать? А почему бы и нет? Мы уже многое забыли, даже больше, чем вы думаете. Наша беда не в забывчивости, а в том, что мы помним слишком хорошо. Мы забываем недостаточно много.

Значительная часть книги Пайка посвящена еще не полностью забытым нами материалам. Поэтому современные пособия по арифметике намного короче. Если бы мы могли забывать раз и навсегда, арифметика, которую сейчас изучают наши дети, стала бы еще короче.

Приведу пример. В книге Пайка много всевозможных таблиц, которыми, как он считает, читатель обязан уметь пользоваться. Пятая таблица озаглавлена «Меры сукна».

Знаете ли вы, что 2,/2 дюйма составляют ноготь? Нет? Так знайте. 16 ногтей — это ярд, а 12 — локоть.

Но это еще не все! 12 ногтей (27 дюймов) — это только фламандский локоть. 20 ногтей (45 дюймов) образуют английский локоть, а 24 ногтя (54 дюйма) — французский. И это еще не все! 16 ногтей плюс 11/5 дюйма (371/5 дюйма) дадут шотландский локоть.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*