KnigaRead.com/

Алексей Шилейко - Информация или интуиция?

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Алексей Шилейко, "Информация или интуиция?" бесплатно, без регистрации.
Перейти на страницу:

СНОВА ШАРЫ

А что, если в попытках ответить на вопрос, почему отдельные процессы в природе необратимы, мы привлечем понятие случайности? Ведь любой процесс в больших физических системах, таких, как множество бильярдных шаров или молекул, сводится к последовательности элементарных актов. На бильярдном столе эти акты суть столкновения шаров между собой. Рассмотрим подробнее столкновение шаров, предположив сначала, что оно происходит в строгом соответствии со всеми законами механики.Вот шары движутся по двум сближающимся прямолинейным траекториям, вот они пришли в соприкосновение, разошлись и продолжают двигаться по двум, теперь расходящимся, траекториям. Стоп! Остановили время и пустили его наоборот. Теперь шары сходятся, двигаясь в обратном направлении по траекториям, по которым они расходились, входят в соприкосновение и, если все законы механики выполняются, теперь расходятся именно по тем траекториям, по которым они ранее сходились. В классической механике процесс столкновения шаров обратим. Следовательно, должен быть обратим и любой более сложный процесс, состоящий из отдельных элементарных столкновений.Представим себе теперь, что акт столкновения хотя бы в малой своей части содержит элемент случайности. Тогда, точно зная траектории, по которым шары сближаются, мы сможем лишь приближенно предсказать траектории, по которым они будут расходиться после столкновения.Если акт столкновения шаров содержит элемент случайности, то оно, столкновение, может быть строго описано в терминах теории вероятностей (теория вероятностей представляет собой строгую, а не приближенную теорию именно для случайных событий). В частности, теория вероятностей позволит предсказать величину угла, в пределах которого будут расположены траектории каждого шара после столкновения.Итак, если элементарный акт столкновения двух шаров содержит элемент случайности, то мы наблюдаем такую картину. Два шара движутся по строго определенным сближающимся траекториям, приходят в соприкосновение, и после этого каждый шар произвольно выбирает себе одну из траекторий в пределах данного угла. Как говорил А. Эйнштейн, бог, перед тем как задать тару определенную траекторию, каждый раз бросает кости.Ясно, что такой процесс необратим. ЕСЛИ после столкновения шаров мы поменяем знак у переменной времени, получится следующее. Расходившиеся шары начнут сближаться в точности по тем же траекториям, по которым они до этого расходились, а придя в соприкосновение, они уже не станут двигаться по своим прежним траекториям. Вместо этого каждый шар опять-таки выберет себе одну из траекторий в пределах данного угла. Но необратимость одного элементарного акта, конечно, означает необратимость и всего процесса, состоящего из таких элементарных актов. Более того, после каждого очередного столкновения неопределенность траектории, а следовательно, и положение шаров будут возрастать, И очень скоро наступит такое положение, когда определенно нельзя будет ничего сказать о положении шаров. Любые утверждения могут делаться только применительно к вероятностям положений и состояний.

КТО ЖЕ ПРАВ, А. ЭЙНШТЕЙН ИЛИ Н. БОР!

Теперь ясно, что предположение о случайности отдельных элементарных актов в природе полностью объясняет необратимость происходящих в ней процессов. Вопрос о том, действительно ли имеет место эта самая случайность, то есть опять-таки, кто прав, А. Эйнштейн или Н. Бор?Никакие макроскопические эксперименты не позволяют однозначно ответить на этот вопрос. Мы уже подчеркивали, и имеет смысл повторить еще раз, что второе начало термодинамики описывает лишь некоторое свойство массовых процессов. Причем это свойство проявляется только в вырожденных системах, то есть в системах, где существенным для их протекания является только наличие элемента в данный момент времени и в данной области пространства, и при этом совершенно безразлично, какой именно элемент на самом деле участвует в данном элементарном акте. Стоит, как мы говорили, снять вырождение, и система начнет вести себя совеем по-иному.Для удовлетворения второго начала термодинамики требуется также равновероятность отдельных микросостояний. Однако для такой равновероятности совсем необязательно, чтобы отдельные элементарные акты содержали элемент случайности. Если все элементарные акты будут совершаться в строгом соответствии с законами классической механики, но этих актов будет очень много и совершаться они будут над большим количеством элементов, то очень скоро система станет вести себя так, что все ее состояния окажутся равновероятными, или, во всяком случае, так, как если бы они были равновероятными. Вспомним, что вынести точное суждение по поводу вероятности можно лишь в том случае, если мы наблюдаем систему в течение бесконечного времени, или, что равносильно, наблюдаем бесконечное количество одинаковых систем.Лучшим доказательством сказанного является опыт работы с так называемыми генераторами случайных чисел. В современных ЭВМ реализуются алгоритмы, позволяющие получать последовательности чисел, распределение которых с любой наперед заданной точностью совпадает с соответствующим распределением случайных явлений. И в то же время эти числа получаются с помощью алгоритма, то есть строго детерминированным образом.Утверждение о том, что из случайной природы элементарных актов вытекает необратимость процессов, состоящих из этих актов, имеет и обратную силу. Если большинство процессов в природе действительно необратимы, значит, в их основе лежат случайные события. Казалось бы, нет лучшего доказательства случайной природы элементарных актов. Ведь разбитая чашка не склеивается! Но не станем торопиться. Наблюдая за разбитыми чашками, мы исследуем лишь локальные свойства природы в течение весьма небольших промежутков времени. А для однозначного ответа на вопрос о случайности необходимо убедиться в том, что необратимость процессов имеет место всегда, в сколь угодно больших областях пространства и в течение сколь угодно больших промежутков времени.Последняя фраза наводит нас на мысль: а не стоит ли поискать ответ на наш вопрос в космологии? Существует космологическая теория, которую впервые начал развивать советский ученый А. Фридман. Согласно этой теории все галактики, составляющие вселенную, разбегаются в разные стороны, причем скорость, с которой удаляется от наблюдателя каждая галактика, пропорциональна расстоянию от этой галактики до наблюдателя. Весьма интересно, что это утверждение справедливо независимо от того, где находится наблюдатель. Советуем читателю как следует поразмышлять над сказанным. Такие размышления позволят ему подметить весьма интересные свойства геометрии нашей вселенной.Нас интересует, однако, другое. В данный исторический период галактики разбегаются. А что будет дальше? В теории Фридмана содержится ответ на этот вопрос. Если средняя плотность вещества во вселенной меньше некоторого критического значения, галактики будут продолжать разбегаться. Такой процесс расширения вселенной, будучи необратимым, и представляет собой окончательное доказательство (на сей раз безапелляционное) случайности элементарных актов. Но это лишь в том случае, если средняя плотность вещества действительно меньше критического значения. Если это не так, то на смену периоду разбегания обязательно .придет период сближения. Галактики начнут двигаться по направлению друг к другу, и так будет продолжаться до тех пор, пока все вещество во вселенной не займет бесконечно малый объем, практически стянется в точку. Затем последует взрыв и все начнется сначала.Теория Фридмана практически является на сегодня общепринятой, хотя бы в той ее части, что вселенная возникла из первичного взрыва. Этому есть много экспериментальных доказательств, в частности так называемое реликтовое излучение. Что же касается прогноза на будущее, то здесь, как говорится, бабушка надвое сказала. Современные подсчеты средней плотности вещества во вселенной дают цифру, чуть меньшую критического значения. Однако ни из чего не следует, что ученые учли все вещество. Вполне возможно, что во вселенной существуют объекты, о которых мы пока Просто ничего не знаем. Ведь только недавно были обнаружены, скажем, черные дыры. Есть все основания предполагать, что истинная средняя плотность вещества все-таки больше критической. Вселенная не исчезнет бесследно, а возродится в очередном первичном взрыве, и так будет повторяться до бесконечности.С позиций вопросов, рассматриваемых в этой книге, нас больше всего интересует тот момент, когда все вещество вселенной стянется в точку. Энтропия точки (одного бильярдного шара), очевидно, равна нулю. Чему же равно количество информации, содержащейся в точке? Это количество информации равно значению энтропии вселенной в тот момент, когда она достигает своего максимального значения, иначе говоря, в тот момент, когда галактики перестанут разбегаться и вот-вот начнут сближаться. Вряд ли стоит спрашивать, о чем эта информация. О всей структуре будущей вселенной, и в том числе о всех чашках, которые возникнут в будущем взамен разбитых сегодня.Так выглядит представление об информации с позиций современной термодинамики и космологии.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*