Саймон Сингх - Книга шифров .Тайная история шифров и их расшифровки
Рис. 14 Частотное распределение букв в зашифрованном с помощью шифралфавита L1 тексте (число появлений букв).
Рис. 15 Стандартное частотное распределение букв (число появлений букв на основе отрывка открытого текста, содержащего то же самое количество букв, что и в шифртексте).
Подведем итоги. Поиск повторений в шифртексте позволил нам определить длину ключевого слова, которое, как оказалось, состоит из пяти букв. Это позволило нам разделить шифртекст на пять частей, где каждая часть зашифрована с помощью шифра одноалфавитной замены, который определяется одной буквой ключевого слова. При анализе той части шифртекста, которая была зашифрована в соответствии с первой буквой ключевого слова, мы смогли показать, что эта буква, L1, является, по-видимому, буквой Е. Этот же прием применяется и для поиска второй буквы ключевого слова. Выясняется распределение частот появления 2-й, 7-й, 12-й, 17-й… букв в шифртексте, и получившееся распределение, приведенное на рисунке 17, снова сравнивается со стандартным распределением, после чего находится величина сдвига.
Это распределение анализировать сложнее. Явных кандидатов для трех соседствующих пиков, которые соответствуют буквам R-S-T, не находится. Однако отчетливо видна ложбина, которая тянется от G до L и которая, видимо, соответствует ложбине, идущей от U до Z в стандартном распределении. Если это так, то можно ожидать, что пики, соответствующие R-S-T, появятся у букв D, Е и F, однако пика у буквы Е не наблюдается.
Рис. 16 Распределение L1 сдвинутое на четыре буквы назад (вверху), в сравнении со стандартным частотным распределением (внизу). Совпадают все основные пики и впадины.
Рис. 17 Частотное распределение букв в зашифрованном с помощью шифралфавита L2 тексте (число появлений букв).
Забудем пока об отсутствующем пике, посчитав его статистическим выбросом, и продолжим наш анализ, предполагая, что ложбина от G до L как раз и является той самой отличительной особенностью. Отсюда следует, что все буквы, зашифрованные в соответствии с L2, были сдвинуты на двенадцать позиций, и L2 определяет шифралфавит, который начинается с М, N, О, Р…, то есть второй буквой ключевого слова, L2, является М. Данное предположение вновь может быть проверено путем сдвига распределения L2 на двенадцать букв назад и сравнения его со стандартным распределением.
На рисунке 18 даны для сравнения оба распределения. Совпадение между основными пиками очень хорошее, так что нет никаких сомнений, что второй буквой ключевого слова действительно является м.
Я не буду продолжать дальнейшее рассмотрение; достаточно сказать, что при анализе 3-й, 8-й, 13-й… букв третьей буквой ключевого слова будет буква I, при анализе 4-й, 9-й, 14-й… букв четвертой буквой ключевого слова будет L, а при анализе 5-й, 10-й, 15-й… букв пятой буквой ключевого слова будет Y. Ключевым словом является EMILY. Теперь можно завершить криптоанализ. Первая буква шифртекста — W, и она была зашифрована в соответствии с первой буквой ключевого слова Е. Будем действовать в обратном порядке:
Рис. 18 Распределение L2, сдвинутое назад на двенадцать букв (вверху), в сравнении со стандартным частотным распределением (внизу). Совпадают все основные пики и впадины
возьмем квадрат Виженера и поищем W в ряду, начинающемся с буквы Е, а затем посмотрим, какая буква находится вверху этого столбца. Этой буквой будет буква в, которая и будет первой буквой открытого текста. Повторяя эту операцию шаг за шагом, мы получим открытый текст, который начинается следующим образом: sittheedow-nandhavenoshamecheekbyjol… Вставив в соответствующих местах пробелы между словами и знаки пунктуации, приведем открытый текст к окончательному виду:
Sit thee down, and have no shame,
Cheek by jowl, and knee by knee:
What саге I for any name?
What for order or degree?
Let me screw thee up a peg:
Let me loose thy tongue with wine:
Callest thou that thing a leg?
Which is thinnest? thine or mine?
Thou shalt not be saved by works:
Thou hast been a sinner too:
Ruined trunks on withered forks,
Empty scarecrows, I and you!
Fill the cup, and fill the can:
Have a rouse before the morn:
Every moment dies a man,
Every moment one is born.
Это стихи из поэмы Альфреда Теннисона «Видение греха». Ключевым словом оказалось первое имя жены Теннисона, Эмилии Селлвуд. Я выбрал в качестве примера криптоанализа отрывок этой замечательной поэмы, так как именно он побудил Бэббиджа направить письмо великому поэту. Будучи строгим ревнителем статистики и составителем таблиц смертности, Бэббидж не был согласен со строками: «Каждую минуту умирает человек, Но каждую минуту человек рождается», — последними строками приведенного выше незашифрованного текста. И он предложил подправить «во всем остальном превосходную» поэму Теннисона:
Следует указать, что если это было бы так, то тогда численность населения Земли не менялась бы… поэтому я беру на себя смелость предложить, чтобы в следующем издании Вашей поэмы Вы исправили бы эти строчки следующим образом: «Каждую минуту умирает человек, Но 11/16 человека рождается»…На самом деле число настолько длинное, что я не могу записать его в одну строку, но полагаю, что 11/16 будет достаточно точным для поэзии.
Остаюсь в Вашем распоряжении,
Чарльз Бэббидж
По-видимому, успеха во взломе шифра Виженера Бэббидж добился в 1854 году, вскоре после разногласий с Твэйтсом, но о его открытии никто так и не узнал, потому что Бэббидж не опубликовал его. Это обнаружилось только в двадцатом веке, когда ученые принялись разбирать его многочисленные заметки. А тем временем этот же способ независимо от Бэббиджа был найден Фридрихом Вильгельмом Касиски, отставным офицером прусской армии. С 1863 года, когда он опубликовал в «Die Geheimschriften und die Dechiffrirkunst» («Тайнопись и искусство дешифрования») работу о своем крупном открытии в криптоанализе, этот алгоритм известней как «тест Касиски», имя же Бэббиджа и его вклад вспоминают нечасто.
Так почему же Бэббидж не сообщил о том, что он сумел взломать этот имеющий столь важное значение шифр? Несомненно, была у него такая привычка — бросать незавершенными значительные и многообещающие начинания и не сообщать о своих открытиях, и в данном случае это могло бы являться просто еще одним примером его равнодушного к этому отношения. Имеется, однако, и другое объяснение. Бэббидж сделал свое открытие вскоре после того, как разразилась Крымская война, а в одной из теорий было выдвинуто предположение, что оно давало Британии явное преимущество над Россией, ее противником. Вполне возможно, что британская секретная служба потребовала от Бэббиджа, чтобы он сохранил свою работу в секрете, тем самым обеспечив себе девятилетнюю фору перед остальным миром. И если это так, то это полностью соответствует многолетней традиции умалчивания о достижениях в области криптоанализа в интересах национальной безопасности, — обычай, который сохранился и в двадцатом столетии.
От объявлений в газете о розыске родных до кладов
Благодаря достижениям Чарльза Бэббиджа и Фридриха Касиски шифр Виженера более не был безопасным. Теперь, когда криптоаналитики вновь обрели контроль в коммуникационной войне, криптографы не могли гарантировать секретности. Хотя они и пытались разрабатывать новые шифры, но во второй половине девятнадцатого столетия не появилось ничего существенного, и профессиональные криптографы были в смятении. Однако как раз в это же самое время у широкой публики появился огромный интерес к шифрам.
Развитие телеграфа, которое вызвало рост интереса коммерческого характера к криптографии, привело также и к формированию общественного интереса к ней. Люди осознали необходимость защищать свои сообщения сугубо личного характера, и если в том возникала необходимость, то применялось шифрование, хотя это и требовало больше времени на их отправку, тем самым увеличивая стоимость телеграмм. Скорость работы телеграфистов, использовавших азбуку Морзе, с открытым незашифрованным английским текстом доходила до 35 слов в минуту, поскольку они могли запоминать фразы целиком и целиком же передавать их, в то время как передавать мешанину букв, которые образуют шифртекст, получалось значительно медленнее, потому что телеграфист должен был постоянно обращаться к письменному сообщению отправителя, чтобы проверять порядок следования букв. Шифры, используемые широкими массами, не смогли бы противостоять профессиональному криптоаналитику, но их вполне хватало для защиты от посторонних людей, любящих совать нос не в свои дела.