Josep Carrera - Трехмерный мир. Евклид. Геометрия
260 до н. э. Гелиоцентрическая астрономия Аристарха Самосского.
ок. 250 до н. э. Сочинения Архимеда.
230 до н. э. Решето Эратосфена.
225 дон. э. Аполлоний и конические сечения.
212 до н. э. Смерть Архимеда.
180 дон.э. Циссоида Диокла. Конхоида Никомеда. Гипсикл и традиция разбиения полного угла на 360°.
140 до н. э. Тригонометрия Гиппарха.
60 до н. э. Гемин и постулат о параллельных прямых.
75 Сочинения Герона Александрийского.
100 «Введение в арифметику» Никомаха Герасского. «Сферика» Менелая.
125 Теон Смирнский и арифметика.
150 «Альмагест» Птолемея.
250 «Арифметика» Диофанта.
320 «Математическое собрание» Паппа.
415 Смерть Гипатии и закрытие библиотеки и Мусейона в Александрии. Конец греческой языческой науки.
485 Смерть Прокла.
520 Анфимий из Тралл и Исидор Милетский.
ГЛАВА 1
Евклид Александрийский
О жизни Евклида почти ничего не известно. Мы знаем, что он работал в Александрии, одном из главных интеллектуальных центров древнегреческого мира, и основал там знаменитую школу математики. Достижения великих ученых являются синтезом наследия предшественников и их собственной работы, результатом их интеллектуального труда и творчества. Это справедливо и в случае Евклида.
Нам почти ничего не известно о жизни Евклида, а теми немногими сведениями, которыми мы располагаем, мы обязаны древнегреческому философу-неоплатонику Проклу, который записал их через шесть веков после смерти математика. Прокл рассказывает, что Евклид работал в Александрии — городе, основанном Александром Македонским (356-323 до н. э.) в 332 году до н. э. и ставшем столицей империи во время правления египетского царя Птолемея I Сотера (Спасителя). Птолемей построил знаменитую библиотеку, которую его сын Птолемей II Филадельф расширил, основав Мусейон. Прокл утверждает, что Евклид учился в Академии Платона и был знаком с сочинениями Аристотеля. Переселившись в Александрию, он основал там школу и заложил основы математической традиции, которую изложил в нескольких сочинениях, в том числе «Началах», написанных в зрелом возрасте.
Евклиду приписывают два знаменитых высказывания. На вопрос царя Птолемея I «Нет ли пути короче, чем тот, о котором ты пишешь в «Началах», чтобы изучить геометрию?» он дал резкий ответ: «В геометрии нет царских путей». Второе — его реакция на вопрос ученика о том, какую пользу принесет ему изучение геометрии. Евклид приказал рабу: «Дай ему три обола[1 Медная монета в Древней Греции. — Примеч. ред.], раз он хочет извлекать прибыль из учебы». Этот великий грек оформил в «Началах» математическое учение, зародившееся за три века до этого и просуществовавшее до VI века, еще девять веков после его смерти, произошедшей около 265 года до н. э. Таким образом, Евклид осуществил великий синтез трех столетий древнегреческой математики, которая, судя по объему сочинения древнего мудреца, была очень развитой дисциплиной, особенно если учесть, что в «Началах» не рассматривались многие вопросы, изучавшиеся в Академии.
ПРОКЛ ДИАДОХ
Древнегреческий философ Прокл (412-485) был выдающимся представителем неоплатонизма. Он родился в Византии, но стал известен как Прокл из Ликии, потому что его родители, выходцы из Ксанфа, хотели, чтобы он получил начальное образование в этой юго-западной провинции Малой Азии. Подростком Прокл отправился в Афины изучать риторику, а затем получал образование в Византии. После этого он вернулся в Афины. Там Прокл учился у Плутарха Афинского (не путать с автором «Сравнительных жизнеописаний») и у философа-неоплатоника Сириана Александрийского. После смерти последнего Прокл принял руководство Академией, из-за чего получил прозвище Диадох («преемник»). Эту должность он занимал на протяжении 40 лет. Несмотря на то что это был период упадка эллинизма, его труды очень важны для лучшего понимания «Начал». Из огромного наследия Прокпа до нас дошли только несколько сочинений, написанных в духе платоновской теологии, поскольку в то время учение Платона считалось божественным, а доктрины Аристотеля — введением к нему.
Биографические заметки Прокла собраны в комментарии к первой книге «Начал» Евклида. В этом действительно очень важном тексте содержатся ценные исторические, эпистемологические и методологические сведения о Евклиде и его предшественниках. Прокл пишет:
«Немного младше последних [Гермотима и Филиппа] Евклид, составивший «Начала», собравший многое из открытого Евдоксом, улучшивший многое из открытого Теэтетом, а помимо этого сделавший неопровержимыми доказательствами то, что до него доказывалось менее строго.
Он жил при Птолемее I, потому что и Архимед, живший при Птолемее I, упоминает о Евклиде. [...] Он моложе платоновского кружка и старше Эратосфена и Архимеда. [...] Он принадлежит к платоникам и близок их философии, почему и поставил целью всего своего изложения «Начал» описание так называемых пяти платоновских тел».
Прокл ничего не говорит о месте рождения Евклида, из-за чего мы можем предположить, что он о нем не знал, но рассказывает знаменитый случай о «царском пути» в изучении геометрии. Вероятно, лучшее резюме биографии Евклида сделал английский писатель Эдвард Фостер в своем путеводителе по Александрии:
«Мы ничего о нем не знаем; честно говоря, сегодня он для нас — скорее свод знаний, чем человек».
ДРУГИЕ СОЧИНЕНИЯ ЕВКЛИДА
Известно, что кроме «Начал» Евклид написал и другие труды. В прологе ко второй части своего комментария Прокл приписывает ему следующие тексты:
«У него есть также много других математических сочинений, полных удивительной точности и научности. Таковы «Оптика», «Катоптрика», таковы также «Начала музыки» и книга «О делении фигур». А в «Началах» геометрии им в особенности следует восхищаться порядком и отбором приведенных теорем и задач. Ведь он берет не все, что можно сказать, а лишь самое основополагающее; кроме того, он применяет разнообразные виды силлогизмов, которые отчасти получают достоверность от причин, отчасти исходят из достоверных положений, но при этом все — неопровержимые, точные и свойственные науке. Помимо них он применяет все диалектические методы: метод разделения — при установлении видов, метод определения — при определении сущности, метод демонстрации — при переходе от начал к искомому, метод анализа — при восхождении от искомого к началам».
Люди умирают, но их труды остаются.
Последние слова математика Огюстена Луи Коши, сказанные архиепископу Парижа
Добавив к этому списку произведения, о которых упоминает Папп Александрийский (290-350) в своем «Математическом собрании», мы получим свод сочинений, приведенный в таблице на следующей странице.
В совокупности эти книги представляют собой довольно четкую программу изучения математики, а также касаются широкого ряда других вопросов геометрии (первые три — начального уровня, последние три — более сложные), астрономии, музыки, оптики и механики. Ниже приводится краткое содержание каждого сочинения, причем особое внимание мы уделим текстам по геометрии. Нам неизвестна их хронология, так что мы приводим труды в алфавитном порядке.
В «Данных» содержатся 94 предложения, в которых анализируется, какие свойства фигур можно вывести, если «известны некоторые из них». Евклид пишет, что данные могут быть нескольких типов: данные величины (касающиеся размеров), данные вида (касающиеся типа геометрических фигур) и данные положения (касающиеся их относительного расположения) или комбинация этих трех параметров. Сочинение можно назвать начальным учебником по элементарной планиметрии.
ПРЕДЛОЖЕНИЕ 45 ИЗ «ДАННЫХ» ЕВКЛИДА
Следующий пример иллюстрирует, какие вопросы разбираются в «Данных». Здесь изданных величины мы получаем данные вида. В предложении 45 говорится:
«Если дан угол АВС [на рисунке он соответствует углу < АВС] некоего треугольника и соотношение между суммой сторон АВ и ВС данного угла и третьей стороной АС, то треугольник определен (задан)».
Сочинения, приписываемые Евклиду МАТЕМАТИКА «Начала» (геометрия): книги 1—XIII (написаны Евклидом) и два апокрифа (книга XIV написана Гипсиклом, книга XV — предположительно Исидором Милетским) ГЕОМЕТРИЯ Начальная геометрия «Данные» «О делении фигур» «Псевдария» Высшая геометрия «Поверхностные места» «Поризмы» «Конические сечения» АСТРОНОМИЯ «Явления» МУЗЫКА Введение в музыку «Гармоническое введение» (Клеонид) «Деление канона» ФИЗИКА МЕХАНИКА «О легкости и тяжести» «О рычаге» ОПТИКА «Оптика» «Катоптрика» (Теон Александрийский)
В предложениях 84 и 85 этого трактата решаются уравнения второго порядка ах ± х² = b² так же, как это делали месопотамские математики (мы увидим это в главе 4), когда решали следующую систему уравнений: