KnigaRead.com/

Юрий Чирков - Охота за кварками

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Юрий Чирков, "Охота за кварками" бесплатно, без регистрации.
Перейти на страницу:

Но им возражают скептики, они твердят свое: дело не в счастье; если в пруду нет рыбы, то никакие, даже самые совершенные удочки и крючки не спасут: улова не будет.

Может, к их словам стоит прислушаться?

Приметы придуманы сыщиком

Неудачи с кварками охладили многих исследователей.

Раздались голоса, что кварки — всего лишь удобная абстракция, что, возможно, в 2000 году на вопрос, что такое кварк, физик лишь недоуменно пожмет плечами, так как теория кварков к тому времени уже будет полностью забыта. «Если из собаки «исходят» звуки лая, то это вовсе не означает, что она состоит из них, — рассуждают некоторые физики. — Так и «слышимый» в экспериментах лай кварков не стоит, право, принимать слишком всерьез!»

Чтобы подкрепить эту свою точку зрения, скептики также увлеклись историческими изысканиями. Они стали вспоминать случаи, когда предсказания теоретиков не только не были подтверждены экспериментами, но позднее на поверку оказались вздорными и были справедливо преданы забвению.

«Не каждая из выдумок теоретиков должна обязательно материализоваться: полагать так было бы слишком наивно. Вспомните, — настаивают они, историю теплорода (жидкости, якобы переносящей тепло от тела к телу) и флогистона — этого гипотетического начала горючести. С их помощью в XVIII веке прекрасно объясняли очень многие явления — от горения тел до их нагревания и охлаждения».

Теория теплорода была прекрасно разработана. С. Карно в 30-х годах прошлого века с помощью понятия теплорода создал, как известно, теорию паровых машин. Тем не менее после того, как в сознании физиков укрепилось понятие о законе сохранения и превращения энергии, теплород был отброшен и забыт. О флогистоне забыли еще раньше.

История науки знает и еще более убедительный пример. Столетиями укреплялось и развивалось представление о мировом эфире, который якобы заполняет пространство и служит средой для распространения электромагнитных волн. Никто и ни в каком опыте не обнаруживал присутствия эфира, но без него, казалось, никак нельзя было объяснить распространение света и другие важные электромагнитные явления.

Свойства эфира описывали, старались определить его плотность, некоторые крупные ученые вычисляли вес атомов эфира. Но теория относительности навсегда отбросила эту гипотезу.

А между тем все факты и наблюдения, которые заставляли признать реальность существования классического эфира и вроде бы неопровержимо «доказывали» его присутствие, остались. Они только получили новое объяснение.

«Как и эфир, кварки — плод умственных спекуляций, — продолжают скептики, — ведь нет пока ни одного эксперимента, который однозначно требовал бы их реального существования. Разговоры о кварках — это дележ шкуры неубитого медведя. И давайте говорить не об охоте и о рыбной ловле, а лучше уподобим физиков-экспериментаторов инспектору-детективу. С точки зрения детективной истории о преступнике-кварке известно многое, если не все: заряд, спин и целый ряд других характеристик-примет. Бывало, ученые находили частицы, зная о них значительно меньше. И если рассуждать в таком ключе, то, видимо, следует честно признать: на сей раз приметы преступника (кварки) оказались придуманы самим сыщиком! Классификация элементарных частиц на кварковой основе, несомненно, очень удачна и полезна, соглашаются критики, — но искать в природе сами кварки ей-ей не стоит…»

Пока идут эти пререкания и споры (ведутся они и в наши дни), стоило бы вспомнить слова Э. Хемингуэя.

Вот что он писал в повести «Зеленые холмы Африки»:

«Настоящий охотник бродит с ружьем, пока он жив и пока на земле не перевелись звери, так же как настоящий художник рисует, пока он жив и на земле есть краски и холст, а настоящий писатель пишет, пока он может писать, пока есть карандаши, бумага, чернила…»

Добавим к этому: настоящий ученый не занимается спорами, а продолжает поиски. Разрабатывает все более совершенные методы для ловли кварков.

Так, в частности, в одной из недавних научных работ предложено воздействовать на поток капелек электростатической силой. Отклонение каждой капельки от первоначальной траектории пропорционально ее электрическому заряду. Поэтому капельки с дробным зарядом могут быть отделены от остальных.

А главное тут: при помощи этого способа можно исследовать тысячи (интенсификация поисков кварков!) капель в секунду.

* * *

Эта глава подошла к концу. Мы видим, что ядерное сафари пока успехом не увенчалось. Непойманные кварки остаются величайшей загадкой физики наших дней.

В чем тут дело? Может, в том, что мы еще плохо понимаем общие законы природы, правила ее игры? И поэтому стучимся в намертво заколоченные двери? Возможно, так.

И есть смысл сейчас поговорить об общих основаниях физики, о том, как эта наука в целом представляет себе окружающий нас мир.

3

В поисках простоты

Пусть все дела ваши будут как два или три, а не как сотня или тысяча; вместо миллиона считайте до полдюжины и все свои расчеты ведите на ногте большого пальца.

Генри Дэвид Торо. Уолден, или Жизнь в лесу.

Простота, простота и еще раз простота!

У человека на каждой руке всего лишь пять пальцев.

Не дюжина, не сотня! У всех цветков яблони пять лепестков. И вообще над живой природой явно довлеет «магия пятерки»: пять органов чувств, пятилучевая симметрия у иглокожих, пять пар конечностей у многих насекомых…

Пять ли, два (самцы и самки у высших животных, третьего пола нет!), семерка ли (с этим числом у человека недаром связаны многие суеверия и фольклорные образы) не суть важно, отметим другое — природа оказывает явное предпочтение малым числам перед большими. Она как бы стремится к наивозможной простоте.

То же в природе неживой (а нас интересует физика).

Сортов зарядов только два: положительные и отрицательные. Обратная пропорциональность квадрату расстояния величин гравитационного и электрического взаимодействий. Трехмерно пространство, в котором мы существуем. Вновь похоже, что Природа, следуя совету Г. Торо, ведет свои расчеты на ногте большого пальца. Всячески избегает громоздкости больших чисел.

Что это: случайность или закон? Глубинное качество материи, упрятанное под многими слоями внешне кажущихся хаотическими нагромождений? Просты ли законы природы или же сложны?

Попробуем в этом хотя бы немного разобраться.

Нити в гобелене

Кто-то из ученых сравнил физику с лоскутным одеялом, где лоскутки-закономерности пригнаны друг к другу кое-как, наспех, где проглядывают связывающие эти «заплатки» ниточки самых неподходящих (черное на белом!) цветов. Да, такое впечатление может произвести природа на профанов. А вот профессионалы знают: сквозь этот сумбур и мельтешение отчетливо виден лик Простоты.

Вещество связывают в ядра, атомы, предметы, горы, планеты, галактики всего лишь четыре вида основных сил. Силы электромагнитные, гравитационные силы, силы сильные и силы слабые.

Тяготение, определяющее структуру космоса, и электромагнетизм, благодаря которому в наших приемниках звучит музыка и светятся экраны телевизоров, известны человеку сравнительно давно. Но лишь в начале нашего века благодаря успехам атомной физики были открыты еще два фундаментальных взаимодействия — сильное и слабое.

Для тяготения и электромагнетизма характерно дальнодействие — потому их так быстро и распознали. Власть этих сил простирается до безмерных далей, теряющихся в космических глубинах.

Иное у ядерных сил (силы сильные и силы слабые).

«Руки» у них коротки. Им по плечу только малые субъядерные расстояния. Сильные силы обусловливают целостность атомных ядер и частиц. Они связывают между собой протоны и нейтроны в атомном ядре и кварки внутри протонов и нейтронов. А вот силы слабые наоборот — именно они ответственны за развалы ядер и частиц.

Именно их стараниями в мире элементарных частиц целое распадается на части. Приведем только один, но важный пример могущества слабых сил. Если бы удалось «выключить» слабые силы, то погасло бы Солнце, ибо «выгорание» содержащегося в светиле водорода, его превращение в гелий прекратилось бы.

Итак, миром правят четыре силы. Но насколько различными они кажутся внешне! Взять хотя бы их величину.

Примем самые мощные из четверки сил — сильные взаимодействия — за мерило, за единицу. Ею будет величина сил, притягивающих друг к другу два протона-соседа Тогда электромагнитные силы, отталкивающие те же протоны (одноименные заряды отталкиваются), будут примерно в сто (10-2) раз слабее.

Еще меньше — в 10-5 раз — слабые взаимодействия (слабые силы). И уж совсем ничтожны силы тяготения: они слабее сильных в 10-39 раз.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*