Иэн Стюарт - Истина и красота. Всемирная история симметрии.
Роковой удар по теории Калуцы-Клайна — не в отношении ее верности, а в отношении того, стоит ли тратить на нее драгоценное время исследований — был нанесен ошеломляющим ростом гораздо более привлекательной теории, в которой можно было делать новые предсказания и экспериментально их проверять. Это была квантовая теория, переживавшая тогда пору своей цветущей молодости.
К 60-м годам двадцатого века, однако, квантовая механика начала сбавлять обороты. Первоначальный прогресс уступил место глубоким парадоксам и необъяснимым наблюдениям. Успех квантовой теории не подлежал сомнению, и на этой основе вскоре возникла «стандартная модель» фундаментальных частиц. Но становилось все труднее найти новые вопросы, на которые был бы хоть какой-нибудь шанс получить ответ. По-настоящему новые идеи трудно было проверить; те идеи, которые допускали проверку, были лишь развитием уже существующих.
Из всех этих исследований возник один весьма изящный основополагающий принцип: ключевую роль в отношении структуры материи на очень малых масштабах играет симметрия. Но важные симметрии фундаментальных частиц — это ни обычные движения эвклидова пространства без деформаций, ни даже лоренцевы преобразования релятивистского пространства-времени. Они включают в себя калибровочные симметрии и суперсимметрии. Кроме того, имеются и другие виды симметрии (вполне в духе тех, что изучал Галуа), действующие перестановками на дискретном множестве объектов.
Каким образом могут существовать различные типы симметрий?
Симметрии всегда образуют группу[82], но имеется много различных способов, которыми группа может действовать. Она может действовать параллельными переносами или вращениями, перестановками компонент или же обращением направления времени. Физика частиц привела к открытию нового способа, каким могут действовать симметрии, названные калибровочными. Выбранное название — историческая случайность (лучше было бы называть их локальными симметриями).
Представьте себе, что вы отправились в другую страну — назовем ее Дупликатия, — и там вам понадобились деньги. Валютой в Дупликатии является пфуннинг, а обменный курс — два пфуннинга за доллар. Сначала это вас слегка смущает, но потом вы обращаете внимание, что имеется очень простое и очевидное правило для перевода всех транзакций из долларов в пфуннинги: в пфуннингах все стоит ровно в два раза больше, чем вы бы заплатили в долларах.
Тут действует некий вид симметрии. «Законы» денежных транзакций остаются неизменными, если удвоить все числа. При этом, чтобы компенсировать численное удвоение, вам приходиться платить в пфуннингах, а не в долларах. Эта «инвариантность относительно монетарного масштаба» представляет собой глобальную симметрию правил, действующих для денежных транзакций. Если везде произвести одно и то же изменение, то правила останутся инвариантными.
Так, а, допустим, прямо через границу, в соседней Трипликатии, местной валютой является будл, причем их дают три за доллар. Когда вы отправитесь в Трипликатию, соответствующая симметрия потребует умножения всех сумм на три. Но законы коммерции по-прежнему остаются инвариантными.
Таким образом, перед нами «симметрия», которая изменяется в зависимости от места. В Дупликатии надо умножать на два, в Трипликатии — на три. Скорее всего, вы не удивитесь, когда, приехав в Квинтапликатию, узнаете, что там доллар надо умножать на пять. Все эти операции симметрии можно применять одновременно, но каждая пригодна только в соответствующей стране. Законы коммерции остаются инвариантными, надо только интерпретировать числа в соответствии с местной валютой.
Это локальное масштабное преобразование денежных операций является калибровочной симметрией законов коммерции. В принципе обменный курс мог бы быть различным в каждой точке пространства и времени, а законы все равно оставались бы инвариантными — при условии, что все транзакции интерпретируются в терминах локального значения «валютного поля».
Квантовая электродинамика соединяет в себе специальную теорию относительности и теорию электромагнетизма. Она явилась первым физическим объединением после Максвелла, и основана она на калибровочной симметрии электромагнитного поля[83].
Как мы видели, теория электромагнетизма симметрична относительно группы Лоренца — группы преобразований специальной теории относительности. Эта группа состоит из глобальных симметрий пространства-времени, то есть ее преобразования надо применять одновременно ко всей вселенной, чтобы сохранить уравнения Максвелла в неизменности. Однако Максвеллов электромагнетизм обладает также калибровочной симметрией, которая играет ключевую роль в квантовой электродинамике. Эта симметрия заключается в изменении фазы света.
Всякая волна состоит из регулярных всплесков. Максимальный размер всплеска — это амплитуда волны. Момент времени, в который волна попадает в этот максимум, называется фазой волны; фаза говорит нам о том, когда и где достигаются пиковые значения. Что важно, это не абсолютная фаза какой-либо волны, а разность фаз между двумя отдельными волнами. Например, если разность фаз двух (в остальном тождественных) волн составляет половину периода (времени между максимальными высотами), то одна волна будет попадать в максимумы как раз «не в ногу» с другой, так что пики одной совпадут со впадинами другой.
Когда вы идете по улице, ваша левая нога на полпериода отстает по фазе от правой ноги. Когда слон идет по улице, его ноги одна за другой касаются земли в фазах, равных 0, 1/4, 1/2 и 3/4 полного периода; сначала левая задняя, потом левая передняя, потом правая задняя и затем правая передняя. Стоит заметить, что, начав считать от 0 с какой-нибудь другой ноги, мы получили бы некоторые другие числа, но соответствующие разности фаз все равно составляли бы те же 0, 1/4, 1/2 и 3/4. Таким образом, относительная фаза корректно определена и физически осмысленна.
Рассмотрим световой луч, проходящий через некоторую сложную систему линз и зеркал. Поведение луча оказывается не зависящим от общей фазы. Изменение фазы эквивалентно малой временной задержке в наблюдениях, или, что то же самое, некоторой перестановке часов наблюдателя.
На геометрию системы или путь света это не влияет. Даже если две световые волны пересекаются, ничто не меняется — при условии, что фазы обеих волн сдвигаются на одну и ту же величину.
Эффект фазового сдвига волны.
Эти сдвиги фаз до сих пор представляли собой глобальную симметрию. Но если внеземной экспериментатор где-нибудь в галактике Андромеда изменит фазу света в одном из своих экспериментов, то в земной лаборатории не последует никакого эффекта. Таким образом, фазу света можно изменять произвольным образом в каждом данном месте пространства и времени, и законы физики должны оставаться инвариантными. Возможность произвольного изменения фазы в каждой точке пространства-времени без глобального требования, чтобы фаза была повсюду одинакова, представляет собой калибровочную симметрию уравнений Максвелла, и эта симметрия сохраняется в квантовом варианте этих уравнений — квантовой электродинамике[84].
Фазовый сдвиг на полный период колебаний есть то же самое, что отсутствие фазового сдвига, а отсюда следует, что рассматриваемое абстрактно изменение фазы является вращением. Таким образом, относящаяся сюда группа симметрии — калибровочная группа — есть группа вращений двумерного пространства SO(2). Однако физики любят, чтобы квантовые координатные преобразования были у них «унитарными», т.е. определялись не действительными числами, а комплексными. К счастью, SO(2) имеет и другое воплощение — в виде унитарной группы U(1), представляющей собой группу вращений в комплексной плоскости.
Коротко говоря, квантовая электродинамика обладает калибровочной U(1)-симметрией.
Калибровочные симметрии оказались ключом к двум следующим объединениям в физике — электрослабой теории и квантовой хромодинамике[85]. Взятые вместе, они составляют Стандартную Модель — на данный момент общепринятую теорию всех фундаментальных частиц. Прежде чем мы увидим, как в ней обстоят дела, надо точно объяснить, что же именно объединяется: не теории, а силы.
Современная физика выделяет четыре различных вида сил в природе — гравитацию, электромагнетизм, слабые ядерные силы и сильные ядерные силы. Все они обладают очень различными характеристиками: они действуют на разных масштабах пространства и времени, некоторые из них заставляют частицы притягиваться, некоторые — отталкиваться, некоторые — делать и то и другое в зависимости от частиц и, наконец, некоторые — делать и то и другое в зависимости от того, на каком расстоянии друг от друга частицы находятся.