Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
Нахмуренная физиономия доктора У. У. Уникурсальяна немедленно появилась среди почтенной компании.
- Не следует, - сказал он, - утверждать того, чего ты не можешь доказать.
- Докажи, что я неправ! - предложил Коникос.
Но в ответ на это Доктор Четных и Нечетных почему-то отвернулся да и растаял втихомолку.
- Теперь далее! - наставительно произнес Асимптотос. - Слушай-ка хорошенько да мотай на ус. Тебе, я думаю, совершенно ясно, что эти два плоскостных треугольника, которые у меня были чем-то вроде выкроек для не-евклидовых треугольников, подобны друг другу?
- Абсолютно ясно! - заявил Илюша.
- А ну-ка, - продолжал словоохотливый старичок, - проверим-ка, подобны ли эти два удивительных не-евклидовых треугольника.
Сперва Илюша не мог сообразить, как ему взяться за эту проверку подобия, но затем придумал. Он положил оба треугольника на половинку сферы. Большой треугольник кое-как закрепил (кажется, кнопками), а малый стал передвигать так, что он скользил по сфере и по большому треугольнику.
- 286 -
Он рассуждал: если эти треугольники подобны, то углы у них равны, а следовательно, можно вдвинуть один из углов малого треугольника в один из углов большого, а если углы равны, то две стороны малого должны совпасть с двумя сторонами большого. Сказано - сделано! И вот, представьте себе, когда он пододвинул один из углов малого треугольника к одному из углов большого, то стороны малого не только не пошли по сторонам большого, не только не совпали с ними, а даже закрыли стороны большого, так что Илюша должен был заключить, что углы малого треугольника больше - и заметно больше! - углов большого треугольника.
- Вот тебе и раз! - сказал Илюша. - Не подобны, нет...
И, честное слово, я не понимаю, как это выходит!
- Дело вот в чем, - серьезным тоном проговорил Коникос. - Мы уже тебе говорили, что сумма углов в не-евклидовых треугольниках не есть величина постоянная, в противоположность евклидовым треугольникам, где сумма углов всегда постоянна и равна, как тебе известно, ста восьмидесяти градусам. Мало этого, в не-евклидовых треугольниках сумма углов связана с их площадью. Причем если ты имеешь дело со сферическими треугольниками, то там чем больше площадь треугольника, тем больше и сумма его углов, и ты сам видел треугольник, сумма углов которого доходила до трех прямых углов. В треугольнике Лобачевского дело обстоит в некотором отношении так же, а в некотором - как раз наоборот. Там тоже сумма углов треугольника связана с площадью, но в обратном отношении, то есть чем больше сумма углов треугольника, тем меньше его площадь, и обратно, пока сумма углов не дойдет до своего естественного предела, то есть станет равной нулю для треугольников, все вершины которых лежат на экваторе сферы. Но уж это в геометрии Лобачевского, собственно, не треугольники, а фигуры, образованные тремя попарно параллельными прямыми. В силу именно этих обстоятельств ты и видишь сейчас, что каждый из взаимно равных углов равностороннего малого не-евклидова треугольника больше любого угла такого же большого треугольника, и так должно быть! А отсюда следует вывод чрезвычайно в данном случае значительный: никаких подобных фигур в не-евклидовых геометриях не существует, и там невозможно построить фигуру, подобную данной, но имеющую иные размеры.
Если нам с тобой повстречаются два треугольника с соответственно равными углами, то нетрудно будет убедиться, что эти треугольники равны. Любопытно еще и то, что площадь такого треугольника ограничена и не может превысить некоторой определенной величины, как бы мы ни увеличивали его стороны, ибо площадь эта прямо пропорциональна разности [180°- (α + β+γ)]. где α, β и -γ суть углы треугольника.
- 287 -
А наше выражение в квадратных скобках, очевидно, не может быть больше ста восьмидесяти градусов. Однако и этого еще мало, и этим не исчерпываются необычайные чудеса этой геометрии.
В ней мы имеем возможность определить отрезок через угол. Ибо коль скоро треугольник вполне определяется своими тремя углами, то я могу точно определить отрезок, указав, что он является стороной равностороннего треугольника с заданным углом (меньшим, разумеется, нежели две трети прямого угла). Отсюда можно сделать один удивительный вывод.
Тогда как в обычном мире необходим эталон (то есть образчик) меры длины - метр, ярд, сажень, - в мире "воображаемой" геометрии в таковом эталоне нет надобности. Там с помощью геометрического построения, как бы исходя из свойств самого пространства, мы строим единицу длины наподобие того, как в евклидовой геометрии строится прямой угол (то, что мы потом его делим на девяносто градусов, к его величине касательства не имеет.)
- Сумма углов равностороннего треугольника Лобачевского, - промолвил Асимптотос, - поистине меньше двух прямых, ибо каждый из них меньше чем шестьдесят градусов. Мы можем тебе показать это.
Снова перед Илюшей выросла полусфера высотой в один метр. Линии, которые провели по стеклу круглые пули Коникоса, были прекрасно видны. Асимптотос подошел к полусфере и лёгонько толкнул ее пальцем. Полусфера закачалась, перевернулась своим срезом (основанием) вверх.
Асимптотос взял ниточку и, нагнувшись над опрокинутой полюсом вниз полусферой, закрепил один конец нитки в одной из трех точек внутри полусферы, где пересекались два следа пуль. Илюша внимательно следил за всеми этими приготовлениями. Затем Асимптотос, туго натянув нитку, повел ее к другой точке пересечения следов не-евклидовой пальбы и закрепил во второй точке, а затем и в третьей точке. Наконец он потянул ниточку из третьей точки снова в первую и закрепил ее там, где она вся и кончилась. Таким образом, внутри полусферы в воздухе повис туго натянутый ниточный равносторонний треугольник. Он висел, разумеется, так, что плоскость его была параллельна полу.
- Теперь это будет тот самый треугольник, который Коникос чертил на полу и о котором ты еще высказал такое авторитетное мнение... насчет суммы его углов, помнишь?
- 288 -
Илюша очень хорошо помнил свое "авторитетное мнение", только ему совсем не хотелось, чтобы и другие об этом вспоминали...
Асимптотос похлопал рукой по краю полусферы, и она тут же превратилась в целую сферу, то есть на лежащей ее половине тотчас же выросла и вторая (верхняя) половина шара. Теперь у этой сферы было два полюса - южный (старый) и северный (новый, верхний). Коникос принес откуда-то маленькую ярко светящуюся точку и положил ее на северный полюс сферы. В светлице стало темно, и лучи ярко светящейся точки северного полюса бросали резкие тени. На полу под сферой эти лучи сейчас же отчетливо нарисовали тень экватора, которая, конечно, оказалась правильным кругом. А внутри этого круга, разумеется, нарисовалась, отступя на некоторое расстояние от окружности, и тень ниточного треугольника.
- Смотри хорошенько! - произнес Коникос. - Видишь, как легли на полу тени тех следов, которые нацарапали на стекле полусферы пульки.
Это, конечно, и было самое интересное в этом волшебном опыте! Илюша заметил без особого труда, что следы пуль Коникоса рисуются на полу, как дуги кругов, перпендикулярных к тени экватора. Они и образовывали на полу своеобразный треугольник с вогнутыми внутрь сторонами. А треугольник этот был как бы "вписан" в самый обыкновенный евклидов равносторонний треугольник, который был тенью ниточного треугольника.
- Ну-с? - произнес Радикс.
И в тот же миг стало опять совершенно светло, а сфера и сияющая полярная точка исчезли. На полу остался лежать очень четкий чертеж круга и двух треугольников внутри его.
Теперь уж не было никаких сомнений в том, что эти не-евклидовы углы много меньше евклидовых. Сумма углов равнялась 110°.
- Хорошо! - сказал Илюша. - На этом-то чертеже совершенно ясно, что углы не-евклидова треугольника гораздо меньше. Но разве тени следов пуль образуют те же углы, как и самые следы?
- 289 -
- Видишь ли, - терпеливо отвечал ему Радикс, - вообще, разумеется, не те же. Однако, если по отношению к лучу света плоскость угла отклонить в одну сторону, а плоскость, на которую ложится тень, - в другую, так, чтобы обе эти плоскости образовали с лучом светящейся точки равные углы, то тени дадут тот же самый угол, который и был у тебя. Попробуй-ка начерти сечение нашей сферы по меридиану и выясни, какие получатся углы. Ты без особого труда, я полагаю, убедишься, что в нашем случае углы будут в точности одинаковые...
Следует еще помнить о том, что, имея дело с геометрией сферы, необходимо принимать во внимание ее размеры: именно это и определяет ее кривизну, как и для псевдосферы, то есть и для "воображаемой" геометрии. Сам Лобачевский полагал, что только физико-астрономические опыты могут дать нам материал для суждения о том, какая именно геометрия свойственна нашему пространству, в котором мы существуем. Поэтому тот, кто скажет, что великий русский геометр подходил к геометрии "как естествоиспытатель", будет очень близок к истине. Современные ученые полагают, что Лобачевский был прав в своих догадках: действительно, в некотором смысле геометрия нашего мирового пространства - это не-евклидова геометрия, хотя она и не совсем такая, как геометрия Лобачевского.