KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Борис Бирюков, "Жар холодных числ и пафос бесстрастной логики" бесплатно, без регистрации.
Перейти на страницу:

В Афинах — этом главном центре эллинской демократии того времени, где верховная власть принадлежит Народному собранию (в котором могут принимать участие все свободные граждане мужского пола, достигшие 20 лет), такими органами являются совет пятисот, суд присяжных, коллегия из 10 стратегов (ведавшая военными делами). Эти органы принимают все важные решения, ассигнуют общественные средства на те или иные строительные работы, подписывают мир или объявляют войну; войти в них может каждый, члены их сменяются, но имеются авторитетные и богатые люди, которые фактически руководят всем. Многие стремятся попасть в число таких могущественных лиц.

Но это не просто, здесь играют роль многие факторы. Выступая в Народном собрании или совете, произнося речь в качестве обвинителя или защищая себя в суде, надо уметь говорить убедительно, тонко иронизировать над своими противниками, последовательно и неотвратимо подводить слушателей к желаемому выводу. Если говорить «только правду и ничего, кроме правды», разве всегда можно добиться этого? Ведь сколько в толпе слушателей, столько и разных представлений о правде. А вот правила рассуждения, правила умозаключений одни и те же у всех...

Вот и судите, были ли несерьезными упражнения в красноречии, которыми занимались государственные деятели Древней Греции, по легкомыслию ли платили огромные деньги софистам, чтобы научиться искусно плести формальные узоры аргументации. От этого искусства часто зависели судьбы тысяч людей, и. вероятно, мало было в то время вложений более окупающихся, чем плата учителям красноречия. И не естественно ли предположить, что при таких условиях уже задолго до Аристотеля эти профессиональные «натаскиватели» будущих публичных ораторов имели представление об основных законах формальной логики.

В конце второго тома упомянутого издания Сочинений Платона есть диалог «Парменид», который известный специалист по классической филологии и античной философии А. Ф. Лосев считает одним из самых значительных произведений не только античной, но и мировой диалектики[5]. В нем изображена встреча и беседа совсем еще молодого (16 или 20 лет) Сократа со знаменитыми на всю Грецию элейскими философами Парменидом (род. в 540/39 или в 515 г. до н. э.) и Зеноном (около 490—430 гг.). В беседе этих гигантов античной мысли (состоялась ли она на самом деле, это не известно) речь идет уже о вещах совершенно отвлеченных, далеких от личных, бытовых или общественных проблем, от вопросов морали, гражданственности или добродетели. Начинает разговор Сократ.

«— Как это ты говоришь, Зенон? Если существует многое, то оно должно быть подобным и неподобным, а это, очевидно, невозможно, потому что и неподобное не может быть подобном, и подобное — неподобным. Не так ли ты говоришь?

— Так.— ответил Зенон.

— Значит, если невозможно неподобному быть подобным и подобному — неподобным, то невозможно и существование многого» ибо если бы многое существовало, то оно испытывало бы нечто невозможное? Это хочешь ты сказать своими рассуждениями? Хочешь утверждать, вопреки общему мнению, что многое не существует? И каждое из своих рассуждений ты считаешь доказательством этого, так что сколько ты написал рассуждений» столько, по-твоему, представляешь и доказательств того, что многое не существует? »[6].

Нам сейчас нелегко сразу сообразить, о чем идет здесь речь. Но для Парменида и Зенона такого типа рассуждения — родная стихия. Они понимают Сократа с полуслова, сразу признают в нем «своего человека», понимающе переглядываются между собой и улыбаются в знак восхищения способным юношей. Дискуссия разгорается всерьез, и начинает обсуждаться основной для философской системы Платона вопрос об идеях (эйдосах), будто бы являющихся образцами и целью всех существующих вещей, и об их свойствах.

Эти страницы сочинений Платона представляют собой, выражаясь современным языком, его главную научную публикацию, оказавшую очень большое влияние на дальнейшее развитие философской мысли. Но неужели философскую теорию такого ранга можно было изложить простым языком, без всяких формул, без специальной символики? Неужели совершенно неправ был Кант, когда сказал, что всякая наука настолько наука, насколько в ней заключено математики?[7]

К словам Канта мы еще вернемся. Здесь же постараемся разобраться в том, какие средства использует Платон в «Пармениде» для формулировки своей теории идей, и являются ли эти средства теми же самыми, которые «работают» в обыденном мышлении и естественно сложившемся разговорном языке. Впрочем, ответ на второй вопрос вряд ли может вызвать затруднения. В повседневной речи не часто услышишь «подобное не может быть неподобным» или «если бы многое существовало, то оно испытывало бы невозможное». Мы не хотим сказать, что люди не употребляют в обиходе ничего, кроме конкретностей, совсем нет, все и повсюду широко прибегают к отвлеченным понятиям, таким, как «необходимость» или «кривизна», но сравнительно недалеко за ними обязательно стоит некоторая совокупность конкретных объектов или ситуаций реального мира.

В цитированном же отрывке из Платона (как и на протяжении всего «Парменида») фигурируют абстракции столь высокого уровня, что они не могут быть пригодными для обычной коммуникативной или информативной речи. Тем не менее Сократ уверенно оперирует этими абстракциями, а Парменид и Зенон большей частью одобрительно кивают головами, но иногда без особых церемоний прерывают его рассуждение и указывают, как нужно его исправить. В этих случаях они замечают в рассуждении Сократа какую-то ошибку, улавливают промах. Вот это-то и может показаться самым поразительным: ведь разговор идет о настолько непонятных и туманных объектах, что, казалось бы, им можно приписать какие угодно свойства и какое угодно поведение.

Сократ же, Зенон и Парменид так не считают - они уверены, что поведение их объектов предопределено единственным образом, как поведение сталкивающихся материальных шаров, и что философ не изобретает это поведение, произвольно приписывая его объектам, а лишь познает его. Следовательно, они убеждены, что поведением объектов, о которых они рассуждают, управляет не человек, а что-то внешнее, не зависящее от человека. Но что?

Тут мы и подошли к главному пункту. Поведение таких абстракций, как «подобное», «многое» и т. д., становится предопределенным с того момента, когда их впервые вплетают в речевую ткань, вставляют в определенный контекст рассуждения, поскольку дальше вступают в действие формальные законы построения суждений и умозаключений, то есть формальная логика, заданная в человеческой мысли и «материализованная» в языке. Логика (запомним это особо!), хотя и принадлежит людям и создана ими (вместе с языком), является объективной данностью.

Во-первых, логика формировалась очень медленно и постепенно, ее создавали тысячи поколений людей, и никто из живущих, как и все живущие совместно, изменить ее не могут.

Во-вторых, логика утвердилась в мышлении независимо от языковой деятельности людей и даже замечена-то была сравнительно поздно, поэтому субъективным образованием считать ее никак нельзя.

В-третьих, были веские объективные причины для появления логики — это необходимость фиксации наиболее общих свойств и отношений между предметами и явлениями реальности — свойств и отношений, подобных тем, что если какой-то (любой) объект есть часть какого-то другого объекта, а этот объект, в свою очередь, есть часть какого-то третьего объекта, то первый объект есть часть третьего объекта; что ни один предмет не может одновременно обладать каким-то признаком и не обладать им, и т. п.

В конце разбираемого нами разговора великий Парменид поучает неопытного еще в философии Сократа. Он говорит юноше: «Твое рвение к рассуждениям, будь уверен, прекрасно и божественно, но, пока ты еще молод, постарайся поупражняться побольше в том, что большинство считает и называет пустословием; в противном случае истина будет от тебя ускользать»[8]. Эти слова дают исчерпывающий ответ на наш вопрос о средствах, с помощью которых Платон формулирует свою теорию. «Пустословие» — это, конечно, рассуждения об абстрактных понятиях. Упражняться в нем следует для того, чтобы не делать в рассуждениях формальных ошибок. А если этих ошибок не будет, то рассуждение приведет тебя к истине. Таким образом, у Платона и его школу, как и у многочисленных его предшественников (в частности, у элеатов), логика выступает как главный инструмент познания.

Сравним эту научную методику с современной. Ее идеал хорошо передан упоминавшимися выше словами Канта; во всяком случае для переработки, сохранения и передачи научной информации мы считаем теперь чрезвычайно полезной если не математическую, то уж во вся ком случае четко разработанную символику. Употребляя принятые в наше время обороты, можно сказать, что наука все более обрастает формализованными языками, источником которых большей частью является математика. Иногда такие языки, в отличие от обычных разговорных, «естественных» языков, называют «искусственными», однако такое противопоставление не очень убедительно. Иллюзия «искусственности» языка математики возникает из-за того, что, как мы хорошо знаем, некоторые великие ученые (например, Лейбниц) вносили определенные усовершенствования в математический язык, иногда очень существенные. Но ведь великие поэты тоже совершенствовали родной язык, изобретали новые слова, речевые обороты, а в отдельных случаях оказывали огромное влияние на процесс преобразования всего языкового стиля. Можем ли мы на этом основании назвать русский, или английский, или немецкий, или китайский язык «сделанным»? Конечно, нет, и здесь можно повторить все то, что мы говорили о «стихийном» создании формальных логических правил. Язык математики создавался на протяжении тысяч лет. Его формирование подчинялось не капризам или фантазиям отдельных математиков. а не зависящим от отдельных людей факторам. Если бы Франсуа Виет не ввел буквенные обозначения для величин в уравнениях алгебры, их ввел бы кто-то другой. Если бы не было Ньютона, дифференциальное и интегральное исчисление все равно бы возникло и при этом примерно в то же самое время; здесь мы даже можем сказать, кто был бы тогда его единоличным создателем — Лейбниц. И так обстоит дело в любой отрасли математики — как в области ее идей. так и в ее языке. Новое достижение появляется (и даже облачается во вполне определенную форму) тогда, когда приходит для этого время, когда перед этим оно «носится в воздухе».

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*