KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Хоакин Наварро - Том 31. Тайная жизнь чисел. Любопытные разделы математики

Хоакин Наварро - Том 31. Тайная жизнь чисел. Любопытные разделы математики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Хоакин Наварро, "Том 31. Тайная жизнь чисел. Любопытные разделы математики" бесплатно, без регистрации.
Перейти на страницу:

Немецкий математик Иоганн Петер Густав Лежён Дирихле (1805–1859) питал к числам особые чувства. Рассказывают, что даже ложась спать, он клал под подушку том «Арифметических исследований» Гаусса. А когда у Дирихле родился первый ребенок, он отправил тестю телеграмму:

2 + 1 = 3.

Яснее выразиться невозможно: раньше их было двое, и вот на свет появился третий. Кроме того, телеграммы в то время были очень дороги, так что послание Дирихле было не только лаконичным, но и дешевым. Он не первым и не последним использовал равенство, вынесенное в заголовок: сам Сократ ломал голову над выражением «1 + 1 = 2», будучи не в силах убедиться в его очевидности. Но что можно ожидать от человека, выбравшего своим девизом фразу «Я знаю только то, что ничего не знаю»?

Австрийский физик и математик Людвиг Больцман (1844–1906) как-то стал героем забавной сцены. Ученый умел быстро выполнять расчеты в уме, поэтому его занятия часто были настоящей пыткой для присутствующих: Больцман пропускал множество действий, так как считал очевидными вычисления, произведенные в уме, и даже не записывал их на доске. На одной из лекций его попросили все же расшифровать ход своих мыслей. Больцман покорно пообещал исправиться и продолжил рассуждения: «Как я уже говорил, поскольку pv = p0v0(1 + at) и так далее, и так далее», — однако по-прежнему ничего не записал. Закончил он свою непонятную лекцию бессмертной фразой: «Я верю, что все сказанное выше будет для вас столь же очевидным, как и то, что один плюс один равно двум». И тут, вспомнив о своем обещании записывать все вычисления, он подошел к девственно чистой доске и записал: «1 + 1 = 2».

Несколько позже Бертран Рассел (1872–1970) и Альфред Норт Уайтхед (1861–1947) удивили весь научный мир, создав на заре XX века (в 1910–1913 годах) невероятно сложный и почти недоступный для понимания трехтомный труд по логике, который, вслед за Ньютоном, назвали «Начала математики». Очевидное для непосвященных равенство «1 + 1 = 2», вынесенное в заголовок этой главы, во втором томе книги приводилось как теорема под номером 54.43, а весь первый том, можно сказать, подготавливал для него почву. Чтобы вы могли оценить всю «увлекательность» «Начал математики», приведем лишь один факт: редакция одной уважаемой газеты учредила премию для того, кто докажет, что прочел всю книгу. Премия так и осталась невостребованной. Какое-то время в редакции теплилась надежда, что хотя бы один из соавторов прочел книгу целиком, но эти ожидания были напрасными: и Уайтхед, и Рассел прочли только лично написанную часть труда.



Фрагмент «Начал математики», в котором приводится строгое доказательство равенства 1 + 1 = 2. Сначала, как иронично указано в тексте (здесь явно слышится шутливый тон Рассела), нужно определить операцию сложения.


Небольшие ошибки

Огюстен Луи Коши (1789–1857) как-то раз получил по почте объемный труд по теории чисел, в котором доказывалось, что диофантово уравнение

x3 + y3 + z3 = t3

не имеет целых решений. Коши, который отличался саркастичным и довольно насмешливым характером, отправил автору трактата письмо, состоявшее из одной строки:

33 + 43 + 53 = 63.

Нечто подобное произошло с прекрасным французским математиком Альфонсом де Полиньяком (1817–1890), известным сегодня как автор гипотезы о простых числах, представляющей собой обобщение гипотезы Гольдбаха. Полиньяк провозгласил:

Любое нечетное число можно представить как сумму степени двойки и простого числа.

Гипотеза не только впечатляла, но и выглядела вполне правдоподобно. Рассмотрим любое число, например 63:

63 = 25 + 31.

Так как 31 простое, то, похоже, гипотеза Полиньяка верна. Прибавим еще один факт: Полиньяк дал понять, что проверил свою гипотезу для всех чисел вплоть до 3000000. Однако, видимо, в его вычисления вкралась ошибка: уже для числа 127 гипотеза не выполняется. Перечислим шесть первых степеней двойки и убедимся в том, что это и в самом деле так:

127 = 21 + 125 = 21 + 5·25;

127 = 22 + 123 = 22 + 3·41;

127 = 23 + 119 = 23 + 7·17;

127 = 24 + 111 = 24 + 3·37;

127 = 25 + 95 = 25 + 5·19;

127 = 26 + 63 = 26 + 3·21.

Однако следующей степенью двойки будет уже 28 = 128 — число, большее 127. Таким образом, несмотря на заявления Полиньяка, его гипотеза не выполняется для числа 127.


Удивительные расчеты

Следующая история произошла на собрании Американского математического общества в октябре 1903 года. Математик Фрэнк Нельсон Коул (1861–1926) должен был выступить с докладом на тему «О разложении больших чисел на множители».

Выступление Коула было не совсем обычным: он поднялся с места, подошел к доске и записал на ней 267—1 — число Мерсенна М67, которое считалось простым. Далее Коул вычислил значение 267 и вычел из него 1. Присутствующие затаили дыхание, а Коул записал на доске еще два числа и вычислил их произведение: 193707721 x 761838257287. Полученное число 147573952589676412927, как и ожидалось, было равно искомому числу М67. Коул развернулся и проследовал на свое место.

Его доклад длился целый час, и за это время ученый не произнес ни слова. Однако аудитория все равно разразилась аплодисментами.

Следует отметить, что в 1903 году еще не существовало ни калькуляторов, ни алгоритмов, которые используются для работы с числами Мерсенна сегодня. По словам Коула, все необходимые расчеты он провел «за три года по воскресеньям».

В честь этого математического подвига Американское математическое общество учредило премию Коула, которая и сегодня остается очень престижной. За поиском простых чисел Мерсенна можно следить в интернете на сайте проекта Great Internet Mersenne Prime Search (http://www.mersenne.org/default.php). Самым большим простым числом, известным на февраль 2013 года, было М57885161 — действительно большое число, состоящее из 17 425 170 цифр. И еще: М5788М61 начинается с цифры 5. Больше об этом числе — ни слова.


Очень большое число

В математике можно говорить о сколь угодно больших числах — конечных, но очень больших, огромных, колоссальных. В 1938 году девятилетний племянник известного математика Эдварда Казнера (1878–1955) придумал число гугол, которое казалось ему невообразимо большим, практически бесконечным. Милтон Сиротта — так звали племянника — определил гугол как единицу, за которой следует 100 нулей.

В математической нотации это число записывается так:

1 гугол = 10100.

Гугол кажется не слишком впечатляющим — куда больше впечатляет гуголплекс, определяемый как 1, за которым следует гугол нулей:


Долгие годы невинное изобретение Сиротты упоминалось в учебниках математики как любопытная диковинка, пока не появился Google. Этот компьютерный гигант был основан в 1998 году двумя молодыми американскими математиками — Ларри Пейджем (род. 1973) и Сергеем Брином (род. 1973). Сначала проектом компании был только поисковый механизм, который со временем занял важное место в интернете, а затем за ним последовали и другие проекты. Название компании представляет собой один из способов написать слово «гугол». На момент создания Google было проиндексировано всего 24 миллиона интернет-страниц, что достаточно далеко от обещанного гугола, но, как мы знаем, математикам часто присущ оптимизм.


Сага о числе 1729

Число 1729 считается мифическим благодаря известной истории о двух математиках — англичанине Годфри Харолде Харди (1877–1947) и индийце Сринивасе Рамануджане (1887–1920). Харди рассказывал, что как-то раз, навещая Рамануджана в больнице, он, чтобы завести с больным непринужденную беседу, сказал, что приехал на такси с номером 1729 — по словам Харди, это число было «ничем не примечательным». «Вовсе нет, — тут же ответил Рамануджан, — это наименьшее натуральное число, представимое в виде суммы кубов двумя различными способами». И действительно,

1729 = 123 + 13 = 93 + 103.

На доказательство этого утверждения, которое у Рамануджана родилось мгновенно, Харди потратил несколько недель. Позднее число 1729 дало начало целому подразделу теории чисел, который изучает так называемые числа Рамануджана — Харди.

Этот рассказ очень известен и подтвержден документально. Он позволяет понять, как работает ум гениального математика, каким Рамануджан, без сомнений, был. Однако не будем забывать о том, чем эта история закончилась, и здесь не обойтись без упоминаний еще об одном гении из мира математики и физики — о нобелевском лауреате Ричарде Фейнмане (1918–1988).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*