KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Строгац, "Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир" бесплатно, без регистрации.
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Название:
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
15 февраль 2019
Количество просмотров:
212
Возрастные ограничения:
Обратите внимание! Книга может включать контент, предназначенный только для лиц старше 18 лет.
Читать онлайн

Обзор книги Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
Назад 1 2 3 4 5 ... 46 Вперед
Перейти на страницу:

Предисловие

У меня есть друг, который, несмотря на свое ремесло (он — художник), страстно увлечен наукой. Всякий раз, когда мы собираемся вместе, он с энтузиазмом рассуждает о последних достижениях в области психологии или квантовой механики. Но стоит нам заговорить о математике — и он чувствует дрожь в коленках, что его сильно огорчает. Он жалуется, что эти странные математические символы не только не поддаются его пониманию, но порой он даже не знает, как их произносить.

На самом деле причина его неприятия математики гораздо глубже. Он никак не возьмет в толк, чем математики вообще занимаются и что имеют в виду, когда говорят, что данное доказательство изящно. Иногда мы шутим, что мне нужно просто сесть и начать его учить с самых азов, буквально с 1 + 1= 2, и углубиться в математику настолько, насколько он сможет.

И хотя эта затея кажется безумной, именно ее я и попытаюсь осуществить в данной книге. Я проведу вас по всем основным разделам науки, от арифметики до высшей математики, чтобы те, кто хотел получить второй шанс, наконец смогли им воспользоваться. И на сей раз вам не придется садиться за парту. Эта книга не сделает вас экспертом в математике. Зато поможет разобраться в том, что изучает данная дисциплина и почему она так увлекательна для тех, кто это понял.

Мы узнаем, как слэм-данки[1] Майкла Джордана могут помочь объяснить азы исчисления. Я покажу вам простой и потрясающий способ, как понять основополагающую теорему евклидовой геометрии — теорему Пифагора. Мы постараемся добраться до самой сути некоторых тайн жизни, больших и малых: убивал ли свою жену Джей Симпсон[2]; как перекладывать матрас, чтобы он прослужил максимально долго; сколько партнеров нужно сменить перед тем, как сыграть свадьбу, — и увидим, почему одни бесконечности больше, чем другие.

Математика повсюду, надо только научиться ее узнавать. Можно разглядеть синусоиду на спине зебры, услышать отголоски теорем Евклида в Декларации о независимости; да что там говорить, даже в сухих отчетах, предшествовавших Первой мировой войне, присутствуют отрицательные числа. Также можно увидеть, как на нашу сегодняшнюю жизнь влияют новые направления математики, например, когда мы ищем рестораны с помощью компьютера или пытаемся хотя бы понять, а еще лучше — пережить пугающие колебания фондового рынка.

По случайному, хотя и уместному для книги о числах совпадению, идея ее написания родилась в день, когда мне исполнилось пятьдесят. Дэвид Шипли, автор нескольких обзорных статей в New York Times, как раз пригласил меня (не зная о моем полувековом юбилее) на обед. Он спросил, не хочу ли я написать серию статей о математике для его читателей. Мне очень понравилась эта идея, и я был готов поделиться радостью от занятий математикой не только с моим любознательным другом-художником, но и с более широкой аудиторией.

Серия из 15 статей под общим названием «Основы математики» появилась в сети в конце января 2010 года. В ответ на их публикацию посыпались письма и комментарии от читателей всех возрастов, среди которых было много студентов и преподавателей. Встречались и просто любознательные люди, по тем или иным причинам «сбившиеся с пути» постижения математической науки; теперь же они почувствовали, что упустили что-то стоящее, и хотели бы попробовать еще раз. Особую радость мне доставляли благодарности от родителей за то, что они с моей помощью смогли объяснить математику своим детям, да и сами стали лучше ее понимать. Казалось, что даже мои коллеги и товарищи, горячие поклонники этой науки, получали удовольствие от чтения статей, за исключением тех моментов, когда они наперебой предлагали всевозможные рекомендации по улучшению моего детища.

Несмотря на расхожее мнение, в обществе наблюдается явный интерес к математике, хотя этому феномену и уделяют мало внимания. Мы только и слышим, что о страхе перед математикой, и тем не менее, многие с радостью бы попробовали разобраться в ней лучше. И стоит этому случиться — их уже будет трудно оторвать.

Данная книга познакомит вас с самыми сложными и передовыми идеями из мира математики. Главы небольшие, легко читаются и особо не зависят друг от друга. Среди них есть и вошедшие в ту, первую серию статей в New York Times. Так что как только почувствуете легкий математический голод, не раздумывая беритесь за следующую главу. Если захотите подробнее разобраться в заинтересовавшем вас вопросе, то в конце книги есть примечания с дополнительной информацией и рекомендациями, что еще об этом можно почитать.

Для удобства читателей, которые предпочитают пошаговый подход, я разбил материал на шесть частей в соответствии с традиционным порядком изучения тем.

Часть I «Числа» начинает наше путешествие с арифметики в детском саду и начальной школе. В ней показано, насколько полезными бывают числа и как они магически эффективны при описании окружающего мира.

Часть II «Соотношения» переводит внимание с самих чисел на соотношения между ними. Эти идеи лежат в основе алгебры и являются первыми инструментами для описания того, как одно влияет на другое, проявляя причинно-следственную связь самых разных вещей: спроса и предложения, стимула и реакции — словом, всех видов отношений, которые делают мир столь многогранным и богатым.

Часть III «Фигуры» повествует не о числах и символах, а о фигурах и пространстве — вотчине геометрии и тригонометрии. Эти темы, наряду с описанием всех обозримых объектов посредством форм, с помощью логических рассуждений и доказательств поднимают математику на новый уровень точности.

В части IV «Время перемен» мы рассмотрим исчисления — самое впечатляющее и многогранное направление математики. Исчисления позволяют предсказать траекторию движения планет, циклы приливов и отливов и дают возможность понять и описать все периодически меняющиеся процессы и явления во Вселенной и внутри нас. Важное место в этой части отведено изучению бесконечности, усмирение которой стало прорывом, позволившим вычислениям заработать. Вычисления помогли решить многие задачи, возникшие еще в античном мире, и это, в конечном счете, привело к революции в науке и современном мире.

Часть V «Многоликие данные» имеет дело с вероятностью, статистикой, сетями и обработкой данных — это все еще относительно молодые области, порожденные не всегда упорядоченными сторонами нашей жизни, такими как возможность и удача, неуверенность, риск, изменчивость, хаотичность, взаимозависимость. Используя подходящие средства математики и соответствующие типы данных, мы научимся обнаруживать закономерность в потоке случайностей.

В конце нашего путешествия в части VI «Границы возможного» мы приблизимся к пределам математического знания, к пограничной области между тем, что уже известно, и тем, что пока неуловимо и не познано. Мы вновь пройдемся по темам в уже знакомом нам порядке: числа, соотношения, фигуры, изменения и бесконечность, — но при этом рассмотрим каждую из них более глубоко, в ее современном воплощении.

Я надеюсь, что все идеи, описанные в этой книге, покажутся вам увлекательными и не раз заставят воскликнуть: «Ну и ну!» Но всегда с чего-то нужно начинать, поэтому давайте начнем с простого, но такого завораживающего действия, как счет.

Часть I. Числа

1. Основы чисел: сложение рыбок

Лучшую демонстрацию концепции чисел, которую я когда-либо видел (самое ясное и забавное объяснение того, что такое числа и зачем они нам нужны), я наблюдал в одном из выпусков популярной детской передачи «Улица Сезам», который называется «123: считаем вместе» (123 Counter with Me). Хамфри, добродушный, но недалекий персонаж с розовой шерсткой и зеленым носом, работающий в отеле «Мохнатые лапы», в обеденное время принимает по телефону заказ от пингвинов-постояльцев. Внимательно их выслушав, Хамфри передает заказ на кухню: «Рыбка, рыбка, рыбка, рыбка, рыбка, рыбка». Увиденное побуждает Эрни рассказать Хамфри о достоинствах числа шесть.

Дети узнают, что числа — великолепный инструмент, который позволяет получить нужное количество порций быстрее. Вместо того чтобы повторять слово «рыбка» столько раз, сколько пингвинов в комнате, Хамфри может использовать более эффективный способ — посчитать и сразу назвать число шесть.

Впрочем, став старше, мы начинаем замечать у чисел и слабые стороны. Да, они прекрасно экономят время, но немалой платой за это становится их абстрактность. Число шесть более эфемерно, чем «шесть рыбок» — именно потому, что оно универсально. Шесть может быть чего угодно: шесть тарелок, шесть пингвинов, шесть раз произнесенное слово «рыбка». Число создает некую неявную общность между приведенными примерами.

Назад 1 2 3 4 5 ... 46 Вперед
Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*