KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Эдуардо Арройо, "Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики" бесплатно, без регистрации.
Перейти на страницу:

«Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несущий на конце мириады спор».


Другие примеры самоорганизующихся систем

Самоорганизующиеся системы не только существуют в природе, но и являются важной частью наших технологических достижений. Один из примеров — нейронные сети, которые используются сегодня в различных сферах, от распознавания голоса до обнаружения лиц на фотографиях.

Нейронная сеть — это компьютерная программа, имитирующая структуру мозга. Она состоит из различных слоев нейронов, которые получают и передают импульсы. Поведение нейронов основано на реальном поведении нейронов мозга, хотя и в упрощенном виде.

Нейронные сети не программируются в привычном смысле этого слова, а обучаются. Алгоритмы глубинного обучения обеспечивают, что каждый из нейронов берет на себя обработку входящей информации, усваивая ее примерно таким же образом, как это происходит в человеческом мозге.

В нашем мозге нейроны связаны друг с другом, образуя слои. Каждый нейрон имеет несколько входных каналов и только один исходящий. Уровень электрического импульса, поступающего со всех входных каналов, определяет, активируется ли нейрон и передаст ли он сигнал. Способность мозга к обработке информации заключается в регулировании силы связей между нейронами и декодировании сигналов, поступающих из внешнего мира.

Нейронные сети работают так же: у каждого нейрона есть несколько входов и один выход; от интенсивности входящего сигнала зависит, активируется ли нейрон. Каждый слой нейронов представляет собой различный когнитивный аспект: так, в нейронных сетях для обработки изображений первый слой используется для обнаружения базовых форм, второй — для более сложных форм, и так далее, пока очередь не дойдет до таких понятий, как «собака» или «мама».

Преимущество обучаемых нейронных сетей состоит в том, что для процесса глубинного обучения не требуется вмешательство человека — достаточно поступающих данных. Компьютер «Уотсон» компании IBM, например, был запрограммирован на поиск в интернете информации, которая позволила ему выиграть в программе “Jeopardy!” и понимать своих людей-собеседников, но этот поиск производился без вмешательства человека. Нейронная сеть с подходящими параметрами может научиться узнавать элементы на основе набора картинок, и человек при этом не должен будет сообщать ей: «Это камень». Недавно Google добился того, чтобы такая нейронная сеть научилась обнаруживать на фотографиях котов. Другое достижение нейронных сетей — программа, способная распознавать капчу — искаженные изображения, которые используются в интернете для проверки, является ли пользователь человеком.

Нейронные сети — самоорганизующаяся система: на основе случайной начальной конфигурации, следуя простым правилам, они способны программировать себя для осуществления таких сложных задач, как распознавание голоса. Этот тип систем — первый шаг к тому, что можно назвать искусственным интеллектом.

Способность простых систем к самоорганизации была использована и в робототехнике: роботы с невысокими возможностями обработки информации научились вести себя подобно упомянутым выше живым существам. Как и термиты, роботы с ограниченными техническими возможностями, взаимодействуя друг с другом, стали способны решать довольно сложные задачи. Этот вид распределенного интеллекта можно рассматривать как очередной пример сложного поведения системы, опирающейся на простые правила.

Несмотря на то что люди — существа с высоким интеллектом, их поведению в совокупности также характерны черты самоорганизующейся системы. Общество в целом ведет себя словно одна из таких систем: несмотря на то что отдельные люди живут и умирают, структуры, в которых это происходит, также ведут себя подобно диссипативной системе — город потребляет энергию и производит энтропию, подобно жидкости, в которой формируются ячейки Бенара. Социальная и экономическая жизнь также могут быть рассмотрены как динамическая система, которая начинается с некоторого гомогенного состояния и в итоге принимает конечную форму, заданную исходными условиями. Социоантрополог Эдмунд Лич (1910–1989) создал математическую модель политических изменений племен качинов в Бирме в статье 1954 года «Политические системы Северной Бирмы: исследование социальной структуры качинов».

Другой пример самоорганизации в наши дни — интернет, который представляет собой безмасштабную сеть. Такая сеть имеет структуру, в которой серия узлов, называемых хабами, обладает большим количеством связей, ведущих к субхабам, и так далее. Безмасштабные сети характеризуются толерантностью к ошибкам: даже если часть сети перестанет работать, совокупность в целом довольно устойчива и не испытает проблем в функционировании.

Существует несколько теорий безмасштабных сетей. Одна из них, предложенная Альбертом-Ласло Барабаси (1967), предполагает, что в основе такой сети лежит механизм предпочтительного присоединения, в котором число связей узла стимулирует появление новых связей. В некоторой степени это похоже на такую ситуацию: богатому человеку намного легче заработать денег, чем бедному. Структура безмасштабных сетей — это продукт самоорганизации, при которой новые узлы, подобно домашнему роутеру, необходимому для соединения с интернетом, подключаются к другим узлам, формируя устойчивую структуру.


Другие диссипативные системы: лазер

Еще одно технологическое применение диссипативных систем — это лазер, устройство, которое использует квантовые свойства атомов для передачи света с определенной длиной волны. Главное свойство лазерного света — в когерентности: его волны распространяются синхронно, отставая одна от другой на определенную величину, и разность фаз остается постоянной.

В атоме электроны располагаются вокруг ядра. Благодаря некоторым законам квантовой механики, они не могут обладать любой энергией, их уровни энергии квантованы и могут иметь лишь определенные значения. Когда электрон находится на орбите с низким уровнем энергии, его можно возбудить с помощью тепла или электромагнитного поля, и тогда частица поднимется на уровень выше. Таким же образом его можно опустить на уровень ниже, при этом избыток энергии будет трансформирован в свет.

Идея работы лазера заключается в том, чтобы заставить электроны производить свет с определенной частотой с помощью электромагнитных колебаний. Так можно добиться не только потока света необходимой частоты, но и когерентности излучения.

Лазеры — пример диссипативной и самоорганизующейся системы: атомы организуются спонтанно и рассеивают энергию, поступающую к ним в виде света. Свет, излучаемый лазером, имеет очень низкую энтропию — именно в силу своей когерентности.

Лазерная технология крайне важна для нашего информационного общества: на ней основаны все оптические системы хранения информации, такие как CD, DVD и Blueray.


Газ как модель Вселенной

В этой книге мы с вами увидели, что изучение такой частной проблемы, как свойства вещества в газообразном состоянии, может привести к появлению самых разных идей, имеющих большое значение для множества областей знания, от информатики до социологии. Как это часто бывает в науке, изучение конкретной проблемы ведет к появлению инструментов, которые затем находят свое применение далеко за рамками исходной дисциплины.

Это как нельзя лучше подтверждает силу математики. В отличие от естественных наук, математика не ограничена действительностью, поэтому может изменяться и расширяться безгранично, создавая новые, все более мощные инструменты. Никто не мог и представить, к чему может привести математический анализ довольно заурядного явления. А на самом деле в математике газа речь идет обо всей Вселенной.

Библиография

BARNSLEY, M.F., Fractals Everywhere, Nueva York, Dover Publications, 2013.

CARNOT, S., Reflexiones sobre la potencia motriz del fuego, traduccion у notas de Javier Odon Ordonez, Madrid, Alianza Editorial, 1987.

CASS, D. у Shell, K., «Introduction to Hamiltonian Dynamics in Economics», Journal of Economic Theory, Filadelfia, Elsevier, 1976.

CERCIGNANI, C., Ludwig Boltzmann: The Man Who Trusted Atoms, Oxford, Oxford University Press, 1998.

GOLDSTEIN, H., Poole, Ch. у SAFKO, J., Classical Mechanics, San Francisco, Addison Wesley, 2002.

GRUNWALD, P. у VlTANYI, P., Shannon Information and Kolmogorov Complexity, publicado en arXivrcs/0410002 [cs.IT], 2004.

HORDIJK, W., STEEL, M. у KAUFFMAN, S., The Structure of Autocatalytic Sets: Evolvability, Enablement and Emergence, publicado en arXiv:1205.0584 [q-bio. MN], 2012.

McQUARRIE, D.A., Statistical Mechanics, South Orange, Nueva Jersey, University Science Books, 2000.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*