Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
- Вот это так! - вскричал Илюша. – Беспроигрышный Дразнилка! Здорово! Знаешь, это мне напоминает то странное слово, которое язык тетушки написал в Схолии Четвертой.
- 109 -
Илюша попробовал прием и убедился в его доброкачественности.
- Мне потому нравится Дразнилка, - заявил Илюша, - что все у него выходит просто. Только торопиться не надо!
Радикс усмехнулся.
- Как сказать! - проворчал он. - Как сказать! Если ты уж так хорошо все понял, то возьми-ка переверни шашки. На них ведь сзади, как ты помнишь, написано "Тетушка Дразнилка".
Вынь одну шашку... Ну, для памяти вынем ту, на которой стоит буква "ша". Потом перепутай шашки и проверь на буквах, как получается насчет правила "выйдет-не-выйдет". А коли заметишь какие-нибудь особенности, не поленись дать исчерпывающее объяснение. Да, кстати, вот еще что. Скажи, пожалуйста: известно ли тебе, что бывают уравнения со многими неизвестными?
- Ну еще бы! - отвечал Илюша - Конечно, известно.
Так вот, представь себе, что Дразнилка имеет довольно близкое касательство к решению систем уравнений со многими и даже весьма многими неизвестными.
- Да что ты? - удивился мальчик.
- Дело в том, - продолжал Радикс, - что если тебе, допустим, придет в голову точно определить, как можно вывести общие формулы, определяющие значения неизвестных в зависимости от коэффициентов в уравнениях, то придется заняться тем же самым, чем мы сейчас с тобой забавлялись, а именно - подсчитать число инверсий. Если не струсишь, то советую проверить это. Давай напишем систему уравнений:
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3
и найдем, чему равняется у.
- Это что-то трудновато, - неопределенно заметил Илюша.
- Для простоты положим, что х и z уже известны и нам надо определить через них у. Ну-ка попробуй, что получится.
- 110 -
Илюша взял карандаш, задумался на минутку и написал следующее выражение для у:
y = (d1 - a1x - c1z) / b1
- Очень мило! Ну, а еще чего-нибудь ты не придумаешь?
- Можно подставить это значение у в остальные два уравнения, тогда останутся неизвестными только х и z.
- Можно. А далее?
- А далее поступаю подобным же образом. Определю из одного из уравнений z и подставлю его в последнее оставшееся уравнение. Получу, очевидно, значение для х. А его можно подставить в предыдущую формулу для z и так далее.
Все определится очень просто. Только бы не запутаться во всех этих подстановках.
- Так, - закончил Радикс, - верно. Придется тебе еще подумать, кстати, о том, чтобы у этих твоих дробей, которые определяют неизвестные, знаменатели не обращались в нуль.
Но если оставить это пока в стороне, то формулы ты получишь верные. О них-то я и хотел тебе сказать несколько слов.
Займись-ка, выпиши, что получается окончательно в знаменателе дробей. Если ты нигде не напутал, то получится алгебраическая сумма произведений:
a1b2c3; a1b3c2; a2b1c3; a2b3c1; a3b1c2; a3b2c1;
А что касается знаков перед ними, то они как раз тем и определяются, какое число инверсий, четное или нечетное, образуют числа "один", "два" и "три" в подписных значках у букв a, b и с, если мы будем писать эти три буквы каждый раз в их алфавитном порядке, как это у нас и сделано. Если при четном числе инверсий брать знак плюс, а при нечетном - минус, то получится алгебраическая сумма, которая называется определителем, или детерминантом, данной системы уравнений. Ты можешь еще заметить, что и числители дробей построены так же, только там вместо одной из букв а, b или с (в зависимости от того, какое ты неизвестное определяешь) поставлена буква d (для икса d заменяет букву а, для игрека - букву b, для зета - букву с). Если мы захотим определить знак перед каждым произведением, то для этого достаточно того, что мы вывели, когда разбирали маленького Дразнилку. А дальше дело пойдет, разумеется, похитрее. Мы еще вспомним нашего друга Дразнилку, когда будем разбирать одну довольно сложную задачу в Схолии Девятнадцатой.
- 111 -
- Теперь уже я буду относиться к Дразнилке посерьезнее. Вот какая он, оказывается, знатная персона!
- Кстати, - задумчиво произнес Радикс. - Ты, кажется, уверял меня по поводу младшего Дразнилки, что из трех элементов можно образовать всего шесть комбинаций?
- Разумеется, - уверенно ответил Илюша.
- Как это мило! .. - еще более задумчиво произнес его приятель. - И ты уверен, что больше шести не может быть?
- Конечно, уверен!
- Так, значит, шесть! И все разные. Это очень важно.
Ровно шесть, говоришь ты?.. Это приводит мне на память один престранный случай. В архиве одного нотариуса города Толедо, в Испании, была обнаружена следующая запись, относящаяся к началу восемнадцатого столетия:
"После кончины достопочтенного дона Диего дель Кастильо в его доме было найдено завещание, согласно которому три драгоценных ларчика - бронзовый, серебряный и золотой - были оставлены трем его друзьям юности: дону Альваро, дону Бепито и дону Висенте, причем условие завещания гласило:
"Означенные предметы переходят во владение моих друзей по их выбору, который должен происходить в следующем порядке:
1)тот, кто видел меня в зеленом плаще, не может выбирать раньше дона Альваро;
2)если дон Висенте не был в Саламанке в тысяча шестьсот девяносто четвертом году, то, значит, тот, кто будет выбирать первым, никогда не давал мне своей табакерки;
3)дон Альваро и дон Бепито могут выбирать во вторую очередь только в том случае, если дон Бепито будет выбирать раньше того, кто первый стал носить шпагу..."
Когда вышеупомянутые лица, как того требует закон, были вызваны в суд, то они показали, что завещание это было составлено лет пятнадцать назад и поэтому сейчас никто из них не может вспомнить, о каком зеленом плаще идет речь, какое имела табакерка отношение к городу Саламанке, и так далее. Однако им известно, что в то давнишнее время дон Диего не раз говорил о том, что он имеет намерение оставить каждому из них хороший подарок. Тогда судья прочел им заключительные строки этого удивительного завещания, где говорилось:
"Настоящим я, завещатель, торжественно утверждаю во всеобщее сведение, что три вышеприведенных условия, которые определяют, кто и в какую очередь должен выбирать ларчики, вполне достаточны для этой цели, и ни одно из них не является лишним".
- 112 -
Однако и это не помогло тропы наследникам, вслед за чем судья, дон Базилио, закрыл заседание суда, а через неделю он, призвав к себе наследников, объявил им порядок выбора, определенный доном Диего в его завещании, сообщив им одновременно, кто видел завещателя в зеленом плаще, кто давал ему свою табакерку, кто первым стал носить шпагу и был ли дон Висенте в Саламанке в тысяча шестьсот девяносто четвертом году".
- Так вот, - продолжал Радикс, - ты теперь знаешь об этом деле столько, сколько знал судья. Представь себе, что к тебе обратились за решением того же вопроса, и ответь, каков же назначенный доном Диего порядок выбора.
- Не знаю, - сказал Илюша.
- Ну, брат, это не решение! - ответил ему Радикс. - Вспомни своего друга младшего Дразнилку и все шесть его переодеваний, хорошенько подумай и давай-ка решать...
Говорят, Илюша впоследствии все-таки нашел это решение. И, как это ни удивительно, в дальнейшем выяснилось, что туманные речи Радикса насчет шести переодеваний младшего Дразнилки, волшебника Икса, оказались в высшей степени полезными для этого. Пришлось еще припомнить и знаменитую речь У. У. Уникурсальяна из Схолии Пятой, о которой забывать вообще не советую... Очень странная история! ..
- Ну хорошо, - пробурчал, немного помолчав, Радикс - А слышал ли ты, кстати, когда-нибудь знаменитую историю с девятью бутылями вина Атоса, Портоса и Арамиса?
- Трех мушкетеров? - изумленно спросил Илюша.
- 113 -
- Ну да. История эта заключается в следующем. Однажды, после путешествия в Пино-Гри, Медок, Барзак, Грав, Шато-Икем, Бургундию и прославленную Шампанью, трое друзей съехались вместе, и между ними произошел следующий великолепный разговор. "Пусть меня подведут к единственным воротам славного города Кагора, - вскричал Арамис, - и повесят на них три раза подряд! Пусть шесть шпаг и десять пистолетов разом будут направлены в мое неустрашимое сердце! Пусть меня разорвут на двести пятьдесят три куска бешеные гиены из проклятых ущелий! Пусть мне в глотку немедленно вобьют ровно двести семьдесят шесть каленых пушечных ядер! Клянусь Геркулесом, Вулканом и самим длиннохвостым Вельзевулом - я не паду духом и не отступлю! Даже если бы я сам был пушечным ядром и на меня напали сразу все мои соседи справа, слева, сзади и спереди, еще с двух сторон, а кроме того, сверху и снизу, то и тогда бы я не дрогнул, а доблестно сразился бы со всеми этими двенадцатью врагами!" Услыхав эту бесподобную клятву, Портос и Атос мигом вскочили со своих мест, выхватив свои шпаги, и грозно гаркнули: "Мы готовы немедленно вступить в бой с миллионом горилл и людоедов, если кто-либо из них усомнится в том, что то, что ты сейчас сказал, чистая правда!"