KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Борис Бирюков, "Жар холодных числ и пафос бесстрастной логики" бесплатно, без регистрации.
Перейти на страницу:

Проследим, в чем выражался не «общий» платонизму о котором говорит Рассел в приведенном отрывке, а именно математический платонизм. Эта разновидность платонизма очень четко проявилась в следующих словах одного из виднейших математиков прошлого века — Шарля Эрмита (1822—1901): «Я верю, что числа и функций анализа не являются произвольным созданием нашего разума; я думаю, что они существуют вне нас в силу той же необходимости, как и объекты реального мира, и мы их встречаем идя их открываем и изучаем точно так, как это делают физики, химики или зоологи»[11]. Эти слова означают, что числа и функции похожи не на приборы и инструменты, — скажем, на счетчик Гейгера или масс-спектограф Астона, которые придумали люди» а на виды растений или животных, скажем, на баобаб или кенгуру, которые существуют фактически, независимо от желания человека от знания человека об их существовании и которые человек со временем лишь обнаруживает.

Первая причина таких представлений указана Расселом — это впечатление вечности, неизменности и совершенства, которое производят математические объекты. Ключ к пониманию второй причины содержится в приведенной цитате из Эрмита, в его словах «существуют в силу необходимости». Смысл, который обычно вкладывается в эти слова, достаточно прост. Если мы, скажем, возводим двойку в десятую степень, то получаем число 1024 абсолютно независимо от нашего желания — необходимым образом; значит, тот факт, что 210 = 1024, имел место и до того как мы начали вычисление, и даже до того как появились люди на Земле. Возьмем другой, более «научный» пример. В свое время перед математиками стояла задача о решении общего уравнения третьей степени, но попытки справиться с ней не увенчивались успехом. Наконец, в 1545 году Джироламо Кардано (1501—1576) в упоминавшейся уже нами (с. 34) работе «Великое искусство...» изложил (открытый ранее Н. Тартальей) метод нахождения корней произвольного кубического уравнения[12]. Проблема была закрыта.

Поставим вопрос: существовали ли корни у произвольного кубического уравнения до Тартальи и Кардано? По-видимому, в каком-то смысле, да, ибо если бы он их «изобрел», то почему они обладают именно данными свойствами и не могут обладать свойствами, несовместимыми с установленными этими математиками?

Как мы видим, ситуация не так проста, как может показаться на первый взгляд. В XIX столетии, когда математические работы полились рекой, ощущение «открывания» стало особенно сильным и сказалось на математическом мировоззрении.

Работая изо дня в день с числами, функциями и уравнениями, любой математик всегда воспринимает их как внешнюю данность. Для «математического платоникам эта данность становится абсолютной. Но, как ни странно, на определенном этапе развития науки эта разновидность догматизма сыграла свою положительную роль. На это обратил внимание уже цитировавшийся нами Ласло Кальмар, который указал на то, что «платонистская» объективизация математических идей «защищала их от отторжения здравым смыслом как иллюзорных и стимулировала развитие математики до той поры, пока математики и философы не смогли лучше понять сущность — и пользу абстракции»[13].

К тому времени, когда была создана теория дедекиндовых сечений, точка зрения математиков на то, какие объекты в их науке более всех «существуют сами по себе», вырисовалась совершенно отчетливо. Математики по молчаливому соглашению выделили главную «платоновскую идею» - математический объект, занявший в иерархии рассматриваемых ими существований центральное положение. Этим объектом стало «множество». В математической науке наступила эпоха теоретико-множественного мышления.

Действительно, «множественный» подход пронизывал теорию Дедекинда. Теория сечений становится убедительным определением действительных чисел, если идея множества — неважно, конечного, бесконечного, построенного фактически или только обрисованного самыми общими словами, представляется чем-то абсолютно ясных, конкретно данным и существующим в той же мере, в какой существует написанная на бумаге буква; ибо она сводит действительные числа к двум классам сечения, а классы — это множества, мыслимые как некие единичные «вещи».

Эта идейная установка естественным образом вырастала из практики самой теоретической математики того времени. В анализе постоянно встречались множества — множества первообразных, множества решений уравнения, множества интегралов, множества дифференциальных уравнений данного типа, множества самосопряженных операторов, множества квадратичных форм от n переменных и т.д. Этот список можно было бы продолжать сколько угодно долго, и не удивительно, что в сознании математиков оформилась идея множества вообще. Завершающий шаг в сторону математического платонизма состоял в том, что эта идея стала казаться понятием самым ясным и доступным среди всех понятий, которыми оперирует матемагическое мышление.(опечатку исправлять не буду. w_cat)

Но коль скоро возникла «множественная» установка, то должен был прийти человек, который постарался бы связать с идеей множества детально разработанную теоретическую конструкцию. Такой человек в урочный час и появился на математической сцене. Это был Георг Кантор (1845—1916).[14]

Кантор исследовал свойства абстрактных множеств расклассифицировал множества в зависимости не от конкретной природы элементов, их составляющих, а от «количества» элементов множества. Поскольку речь идет в основном о бесконечных множествах, то проблема «величины» множества является далеко не тривиальной. Кантор разработал изящные способы сравнения множеств по величине и упорядочения множеств, введя центральное понятие своей теории — понятие мощности множества, которое есть некий аналог понятия количества элементов конечного множества.

В наши задачи не входит изложение знаменитого Mengenlehre — учения о множествах, или, как принято говорить в русской традиции, теории множеств. Зарождение, расцвет, почти безраздельное господство и начало критики этой конструкции человеческого интеллекта могли бы послужить темой не одной книги. Но один из результатов Кантора понадобится нам в дальнейшем, и поэтому мы именно на его примере продемонстрируем тот тип рассуждений, который в конце концов привел к трудностям, явившись причиной «кризиса оснований математики», разразившегося на пороге нашего столетия.

Рассмотрим множество целых положительных чисел 1, 2, 3, ... Оно, очевидно, бесконечно. Рассмотрим теперь множество (бесконечное) a1, a2, a3,... каких-то элементов неизвестной природы. Интуитивно ясно, что второе множество имеет «столько же» элементов, сколько первое (слова «столько же» мы берем все же в кавычки, поскольку перед нами два бесконечных множества, дальние элементы которых мы никогда не сможем выписать), так как с каждым элементом аi можно взаимно-однозначно сопоставить целое положительное число. Этим числом будет i — его номер. Всякое множество, элементы которого можно мыслить нумеруемыми натуральными числами, носит название счетного множества. Ясно, однако, что процесс этой нумерации (пересчета) не имеет конца.

Поставим теперь проблему: всякое ли бесконечное множество счетно? «Здравый смысл» склоняет к положительному ответу: ведь каким бы ни было бесконечное множество, можно брать его элементы по одному и присваивать каждому из них определенный номер; так мы, как будто, можем дойти, до любого элемента; условие счетности выполняется. Однако Кантор доказал, что - интуиция в этом волосе подводит. Он указал на множество действительных чисел как на пример множества, не являющегося счетным.

Приведем доказательство несчетности множества всех положительных действительных чисел, не превосходящих единицу. Представим каждое из этих чисел в виде правильной бесконечной десятичной дроби, то есть дроби, начинающейся нулем перед запятой и такой, что в ней бесконечно много цифр, отличных от нуля. Тогда между числами рассматриваемого множества и дробями указанного вида установится взаимно однозначное соответствие (см. примечание 3; число 1 представляется как 0.999...).

Доказательство ведется от противного. Предположим, что нам удалось произвести нумерацию всего множества этих чисел буквами с индексами, указывающими их порядковый номер: a1, a2, a3... - Пусть, скажем, начало нумерации имеет вид (десятичные дроби мы записываем одну под другой):



Наше допущение означает, что рассматриваемое множество чисел счетно. Однако легко построить число, принадлежащее рассматриваемому множеству, но никакого номера в нашей системе нумерации не имеющее. Напишем нуль и поставим после него запятую. Для определений первой цифры после запятой поступим следующим образом. Рассмотрим первую после запятой цифру в первой числе а1 и, если эта цифра выражает четное число, то в новое число впишем цифру 5, в противном случае впишет цифру 6. Чтобы определить вторую цифру после запятой нового числа, возьмем вторую цифру после запятой числа a2 и поступим по точно такому же правилу. Продолжая эту процедуру, то есть беря третью цифру после запятой, третьего числа, четвертую цифру после запятой четвертого числа и т. д., мы будем строить по указанному. правилу десятичные знаки некоторого числа A (в нашем примере его «начало» выглядит так: 0,5665 ...). Число a, очевидно, принадлежит к рассматриваемому множеству, ибо оно заключено между нулем и единицей. С другой стороны, оно не охвачено нашей нумерацией, так как отличается от любого из занумерованных чисел хотя бы в одном десятичном знаке, а именно — оно имеет другую цифру в том разряде, который «изготовлялся» по данному числу. Но выше предполагалось, что нашей нумерацией охвачены рее действительные числа. Мы пришли к противоречию. Значит, наше допущение неверно: множество всех положительных действительных чисел, не превосходящих единицу, не является счетным (такое множество называется несчетным), и, следовательно, несчетным является и все рожество действительных чисел (строгое доказательство последнего утверждения, интуитивно очевидного, можно осуществить с помощью того же самого «диагонального» метода, которым мы воспользовались для установления более частного результата[15]).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*