KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Борис Бирюков, "Жар холодных числ и пафос бесстрастной логики" бесплатно, без регистрации.
Перейти на страницу:

На шаге (9) снова, причем дважды, применяется закон дистрибутивности дизъюнкции относительно конъюнкции. Шаг (10) состоит в том, что из четырехчленной конъюнкции на основании законов 17 и 14 исключается тождественно-истинный член (~А1 V A1). На шаге (11) применяется закон коммутативности дизъюнкции, а на шаге (12) происходит раскрытие скобок по закону дистрибутивности дизъюнкции относительно конъюнкции. Обращаем внимание на то, что в наших преобразованиях использовалась ассоциативность операций дизъюнкции и конъюнкции, позволившая в формах, представляющих собой многочленные дизъюнктивные либо конъюнктивные формулы, удалить все скобки (это означает, что скобки мыслятся расставленными любым допустимым, то есть не нарушающим свойства выражения «быть формулой», образом)[18].

Этим же свойством, да еще законом коммутативности, мы пользовались на шаге (13), когда в трех членах конъюнктивной формулы, полученной на предыдущем этапе (они представляют собой дизъюнктивные формулы), расположили буквы в порядке возрастания индексов, сгруппировав вместе буквы и их отрицания. Подчеркнем, что на каждом из тринадцати шагов мы применяли наше «основное» правило вывода — производили замену равного равным, причем иногда по нескольку раз.

Исследуем теперь полученное выражение. Как и предыдущая формула, оно представляет собой конъюнктивную формулу, состоящую из трех дизъюнктивных формул. Рассмотрим первую из них, взятую с удобной для наших целей расстановкой скобок: (А1 V ~А2) V (A3 V ~A3); формула (А3 V ~A3) есть тождественно-истинная форма (частный случай закона исключенного третьего); но раз в дизъюнктивной формуле (А1 V ~A2) V (A3 V ~A3) один из членов тождественно-истинен, то и вся формула также тождественно-истинна — это вытекает из табличного определения дизъюнкции в терминах истинностных значений.

В остальных двух дизъюнктивных формулах исследуемого выражения тоже «присутствует» закон исключенного третьего, поэтому каждая из них также тождественно-истинна. Итак, B нашей трехчленной конъюнкции каждый член оказывается тождественно-истинным. Вспомнив табличное задание операции конъюнкции (легко распространяемое на конъюнктивные формулы с произвольным числом членов), мы приходим к заключению, что наша результирующая формула тождественно-истинна. Но, в силу транзитивности отношения равенства, исходная формула равна результирующей, значит, и она тождественно-истинна.

Чтобы у читателя не создалось впечатления, что аналитические методы обязательно приводят к столь пространным выкладкам, мы решим эту же задачу другим способом. Предварительно заметим, что равенство вида

((~а V β) &(γ V а)) = (~а V β) &(γ V α) & (γ V β)) (*)

является верным равенством, каковы бы ни были формы α, β и γ этом можно убедиться, производя его табличную проверку; равенство (*) можно вывести и непосредственно из наших постулатов — осуществить это преобразование мы предоставляем читателю).

Возьмем конъюнкцию наших посылок и исключим из нее знаки → : ((А1 → ~А2) & (A3 → А1)) = ((~А1 V ~А2) & (~A3 V A1)). Но в силу (*): ((~A1 V ~A2) & (~А3 V A1)) = ((A1 V ~A2) & (~A3 V A1) & (~A3 V ~A2))

(здесь роль α играет формула A1 роль β — формула ~A2 роль γ — формула ~A3)- Но очевидно, что из конъюнктивной формулы, сколько бы членов она ни имела, следует каждый ее член (так как не может быть, чтобы конъюнктивная формула была истинна, а какой-либо ее член — нет). Значит, если конъюнкция наших посылок истинна, истинна и формула (~A3 V ~A2) (поскольку она есть один из членов трехчленной конъюнкции, равной конъюнкции посылок). Значит, (~A3 V ~A2) есть следствие из посылок. Но в силу определения (~A3 V ~A2) = (A3 → ~A2)- Задача решена.

Тождественно-истинные высказывания служат для выражения логически правильных форм рассуждений. Для иллюстрации этого положения приведем решение задачи восходящей к немецкому логику и математику Э. Шредеру — одному из продолжателей алгебро-логической линии исследований, начало которой было положено Булем[19]. «Один химик, имея в виду построить на этом дальнейшие заключения, выдвинул утверждение: «Соли, которые не окрашены, суть соли, которые не являются органическими телами, или суть органические тела, которые не окрашены». Другой химик с этим не согласился. Кто был прав?»

В рассуждении первого химика можно выделить следующие элементарные высказывания (суждения): «Нечто есть соль», «Нечто есть органическое тело» и «Нечто окрашено». Все рассуждение можно представить в виде следующего сложного условного суждения: «Если нечто есть соль и (это нечто) не окрашено, то (это нечто) есть соль и не есть органическое тело или есть органическое тело и не окрашено». Заменив элементарные высказывания соответственно переменными А1 A2 и A3, а вместо логических союзов «и», «или» и «если..., то» употребив знаки &, V и →, мы можем представить логическую форму этого сложного высказывания следующим выражением: ((А1 & ~A3) → ((A1 & ~A2) V (А2 & ~A3))). Для решения спора между двумя химиками надо определить, представляет ли оно тождественно-истинное высказывание.

Проведал соответствующие преобразования, на этот раз без объяснений (мы предоставляем читателю самостоятельно определить те схемы аксиом нашего исчисления, которым мы пользуемся на каждом шаге).



В полученной на последнем шаге двучленной конъюнкции в каждом члене (представляющем собой дизъюнкцию пропозициональных переменных или их отрицаний) имеется 5 обязательно какая-то переменная и ее отрицание. Следовательно, оба члена конъюнктивной формы тождественно-истинны и, значит, тождественно-истинна и она сама. Итак, рассуждение первого химика было логически правильным, а его оппонент допустил ошибку.

Обратим теперь внимание на то, что в обеих рассмотренных интерпретациях фигурировали множества элементов, являющихся областями значений пропозициональных переменных; именно на этих множествах получали определение операции ~, &, V, свойства которых были ранее установлены равенствами 1—17 из пункта IV, и в этих же множествах находились элементы — результаты применений операций (последнее свойство называется замкнутостью множества относительно данных операций). Тем самым эти множества составляют то, что называется булевыми алгебрами. Булева алгебра—это любое множеством объектов, для которых определены одна одночленная (одноместная, унарная) операция (~) и две двучленных (двуместных, бинарных) операции (&, V) причем множество М замкнуто относительно этих операций; в нем имеются объекты, соответствующие константам 0 и 1 рассмотренного нами исчисления (нуль и единица булевой алгебры); одночленная операция, которую мы назвали отрицанием, подчиняется закону снятия двойного отрицания, а двучленные операции, которые мы назвали конъюнкцией и дизъюнкцией, обе коммутативны, ассоциативны, дистрибутивны одна относительно другой, подчиняются законам поглощения и, вместе с отрицанием, законам Де Моргана, а также законам, в которых фигурируют 0 и 1 (законы 14—17) (ср. с. 55)[20]. В первой из наших интерпретаций булевой алгеброй является множество из двух элементов — 0 и 1, во второй — множество истинностных значений (впрочем, можно считать, что булевой алгеброй здесь было множество высказываний[21]. понимаемых, однако, так, что высказывания, имеющие одно и то же истинностное значение, не различаются)[22]; как мы убедимся ниже, имеются и другие интерпретации булевой алгебры.

Формальный аппарат, изложенный в пп. I—IV (пункт V, как говорят, не расширяет его возможностей), можно понимать как теорию абстрактной булевой алгебры — булевой алгебры как любого множества объектов (носителя), взятого вместе с семейством операций. определенных на этом множестве, которое удовлетворяет всем требованиям данного аппарата, причем как теорию в узком смысле: как некоторое исчисление (равенств). Такую теорию следует отличать от теории булевых алгебр в широком смысле, в которой исследуются свойства приведенного формального аппарата (и аналогичных ему построений) и его интерпретации, формализации булевых алгебр средствами тех или иных логических систем, обобщения понятия булевой алгебры и т. д.

В логике исчислением обычно называют систему правил порождения объектов, допускающих осмысление (интерпретацию), и позволяющую выделять среди осмысленных объектов такие, которые в интерпретациях оказываются в каком-либо разумном смысле истинными суждениями. В рассмотренном нами исчислении объекты возникают в два этапа:

на первом с помощью пп. I и II порождаются формулы (и —с помощью п. V —их сокращения),

на втором (п. III) из формул строятся равенства. Далее среди возникших таким образом объектов происходит отбор тех из них, которые в интерпретациях оказываются верными, отбор равенств[23], истолковываемых как суждения о свойствах элементов соответствующей булевой алгебры, выраженные в терминах ~, & и V. Этот отбор задается постулатами (п. IV); он основан на процедуре порождения верных равенств посредстве м правил вывода [b], исходя из равенств, представляющих собой аксиомы (согласно списку схем аксиом [а]).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*