KnigaRead.com/

Валентин Красилов - Метаэкология

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Валентин Красилов, "Метаэкология" бесплатно, без регистрации.
Перейти на страницу:

Говоря о происхождении жизни, мы чаще всего имеем в виду какие-то структуры. Но жизнь, по верному замечанию Л. Берталанфи (L. von Bertalanffy, Problems of Life. N.Y.: Harper, 1952), — это скорее процесс, чем структура, Это процесс сохранения высокоэнергетического состояния органической системы извлечением энергии из среды.

Органические вещества, попадавшие в океан, вероятно, накапливались в виде нефтеподобной пленки. Основываясь на модельных опытах, можно предположить, что при высокой температуре и под действием ультрафиолетовых лучей здесь возникали протеиноидные микросферы (вроде тех, которые получал американский исследователь С. Фоке, нагревая протеиноидную смесь), полинуклеотиды и многослойные мембраны. Считают, что первичной матрицей была РНК, так как ее удается синтезировать без участия специализированных энзиматических систем.

Отношения между РНК-овыми частицами и протеиноидными микросферами могли складываться по типу «хищник — жертва». На это указывает агрессивность вторгающихся в клетку нуклеиновых кислот РНК-овых вирусов — может быть, наиболее древних из сохранившихся до наших дней организмов — способных в то же время вступать в симбиотические отношения с генами хозяина. Первичные РНК-овые частицы также, вероятно, могли превращаться из хищников в симбионтов микросфер. Они таким образом приобретали белковый футляр и, благодаря высокой избирательной способности по отношению к продуктам обмена, стабилизировали внутреннюю среду микросферы. Эволюционное решение известного парадокса «курицы и яйца» (для воспроизведения белков нужны нуклеиновые кислоты, для воспроизведения нуклеиновых кислот — белки, так что же было раньше — РНК, ДНК или белки?), по-видимому, заключается в том, что раньше не было ни «курицы», ни «яйца» в том виде, в каком мы их знаем сейчас.

В ходе совместной эволюции нуклеотидные и белковые частицы менялись ролями. Не только возрастала их взаимозависимость, но происходила переоценка ценностей, превращение цели в средство и наоборот. Белковые тельца служили всего лишь футлярами нуклеиновых кислот. Но от футляров требовалась устойчивость, способность приспосабливаться к различным условиям. Со временем их самоценность возрастала, и теперь уже мысль о том, что ДНК избрала для своего воспроизведения трубкозубов и людей, звучит гротескно. Мы, «футляры», считаем ДНК не более чем средством нашего воспроизведения, и не без оснований, хотя следы прежних отношений еще различимы в механизмах, обеспечивающих устойчивость воспроизведения генетической матрицы в ущерб «футлярам». Один из таких архаичных механизмов — естественная смерть.

Мы располагаем лишь косвенными данными о начальных стадиях органической эволюции, но можем предположить, что уже тогда протекали процессы, неоднократно повторявшиеся в будущем, а именно переход антагонистических отношений в сотрудничество, «сборка» сложных конструкций из готовых блоков и «переоценка ценностей» со смещением отношений «цель — средство» в сторону формирующейся системы высшего ранга.

Как и в эволюции промышленного производства, решающее значение имело совершенствование технологии, позволявшее осваивать новые источники энергии и переходить на менее дефицитное сырье. Первые фотосинтетики, вероятно, использовали в качестве донора водорода не воду, а сероводород или другие высоковосстановленные соединения. Умение расщеплять воду дало независимость от сырья, запасы которого ограничены. Отходы жизнедеятельности — кислород, например, — вначале губительные для жизни, все больше вовлекались в воспроизводство, становясь жизненно необходимыми. Более сложные технологии требовали специализации видов.

Направленность

В соответствии с термодинамическими закономерностями, цель развития каждой экосистемы и биосферы в целом состоит в сокращении производства энтропии: в экосистемном смысле, отношения выведенной из круговорота отмершей органической массы (мортмассы) ко всей массе живого вещества (биомассе). Последнее в данном случае соответствует объему системы, в прямой связи с которым находится отношение поступающей извне и накапливаемой внутренней энергией системы — ее энтальпия. Эти соотношения объясняют общую тенденцию к увеличению биомассы.

Первичная бактериальная биосфера при сравнительно небольшой биомассе микробных матов производила огромное количество биокосного вещества, о чем свидетельствуют залежи шунгитов, черносланцевые и железо-кремнистые формации. Последние составляют около 20% всего объема осадочных пород. С ростом биологического разнообразия и усложнением структуры микробных сообществ в позднем протерозое производство биокосного вещества существенно сократилось (см. H.J.Hofmann: J.Paleont., 1976, 50, 1040-1073).

Появление многоклеточных организмов и колонизация ими суши в силуре — раннем девоне дало огромный прирост биомассы, содержащейся в биосфере. Известно, что биомасса наземной биоты многократно превышает биомассу морской биоты. Соответственно дальнейшие изменения биомассы были связаны главным образом с событиями на суше, такими как лигнификация растительных тканей как средство повышения их устойчивости; появление древесных растений с опадающими побегами, как у археоптеридиевых; развитие листьев как периодически или постепенно опадающих фотосинтетических органов; формирование сосудов как основных проводящих элементов и связанное с ним увеличение потенциального объема древесины. В ходе этих событий происходило увеличение биомассы наземной растительности, составляющей большую часть живого вещества биосферы.

Если сравнить еврамерийские карбоновые леса, наиболее продуктивную растительную формацию прошлого, с современными влажнотропическими лесами, то обнаружится, что в первых древесные виды составляют в типичном случае около 50%, во вторых — до 70%, максимальная высота деревьев в первых до 40 м, во вторых — до 60 м. В то же время первые были углеобразующими, для вторых торфонакопление нехарактерно и даже лесная подстилка в них не достигает значительной мощности. По разнообразию видов деревьев (травянистые растения сравнивать труднее, так как лишь незначительная часть их сохраняется в ископаемом состоянии) современные леса многократно превосходят карбоновые, имея около 40-100 видов на гектар, тогда как в карбоне, по наиболее богатым местонахождениям, представляющим соизмеримые площади, эта цифра не превышает двадцати. Такого рода сопоставления показывают, что рост биомассы в масштабах геологических эр сопровождался увеличением биологического разнообразия и уменьшением производства мортмассы.

Разнообразие

В общем смысле, разнообразие является информационным показателем структурной сложности, от которой в конечном счете зависит как абсолютный рост биомассы, так и сокращение относительного прироста мортмассы. Биологическое разнообразие служит такого рода показателем для любых биологических систем. Так организм как система характеризуется разнообразием физиологических процессов и обеспечивающих их структур, а разнообразие экосистем определяется числом экологических ниш, о котором мы традиционно (хотя и не вполне адекватно) судим по числу видов.

Как основная единица классификации животных и растений вид постоянно привлекает внимание систематиков. Концепции вида расходятся широким спектром между платоновскими эйдосами и условными подразделениями, выделенными для удобства. Но виды различают не только систематики и даже не только люди, но и животные, хотя, может быть, и в несколько иных границах. Значит, виды ближе к эйдосам, чем к условным делениям алфавитного справочника. Виды систематика имеют смысл только как отражение (может быть, не всегда и не во всем точное) видов — элементов природных систем.

Структура природной системы отвечает требованию эффективного использования доступных энергетических ресурсов и представляет собой набор функциональных ролей (экологических ниш), исполнение которых предполагает тот или иной уровень специализации организмов. Концепция экологической ниши смущает философски наивных биологов содержащейся в ней идеей предопределения: могут ли быть ниши без видов, до них? Однако предопределение ниши есть естественный результат развития экосистемы по предопределенному сценарию (конечно, Гамлет Смоктуновского отличен от Гамлета Оливье, но это лишь исполнительские варианты идеи Гамлета).

Чем сложнее структура, чем выше специализация, тем меньше отходов. Некоторый минимальный набор — производителей живой массы, ее потребителей двух и более уровней, потребителей отмершего вещества — обязателен и предсказуем во всех случаях. Но это очень широкие выделы функционального пространства, которые дробятся на все более узкие ниши. Наряду с эффективностью, ролевая специализация решает задачу обеспечения устойчивости системы в ее взаимодействиях с другими системами. Одни организмы прочно удерживают территорию, сохраняют пространственную структуру, как деревья, образующие полог леса, другие заполняют бреши, осваивают новые пространства, как сорные травы.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*