KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Химия » Айзек Азимов - Энергия жизни. От искры до фотосинтеза

Айзек Азимов - Энергия жизни. От искры до фотосинтеза

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Энергия жизни. От искры до фотосинтеза" бесплатно, без регистрации.
Перейти на страницу:

Но все же углеводы, жиры и белки — это почти все органические составляющие живой ткани, и давайте теперь сосредоточимся именно на них.


Анализ органических веществ в первой половине XIX века привел к провозглашению принципиально нового различия между органическими и неорганическими веществами. Оказалось, что в состав всех веществ, выделяемых из живой ткани, входят водород и углерод, очень часто — кислород, часто — азот, иногда — сера и так далее. А вот в состав типичных неорганических веществ водород, кислород, азот, сера и многие другие атомы входят тоже очень часто, но углерод — крайне редко, за редкими исключениями вроде известняка.

Этим и объясняется горючесть органических веществ, ведь и углерод, и, разумеется, водород горючи сами по себе. Любое вещество, молекула которого включает в себя атомы водорода и углерода, тоже является горючим. Так что на этот фактор влияет банальный химический состав вещества, а не мистическая «жизненная сила».

Вторым важным отличием органических веществ от неорганических оказался размер молекул. Даже самые крупные неорганические молекулы — достаточно невелики, состоят из десятка-двух атомов. А вот у органических веществ, напротив, такое количество атомов характерно лишь для самых крошечных молекул. В молекуле глюкозы, для органических веществ достаточно маленькой, содержится 24 атома, а в средней молекуле жира — 170. Молекулы крахмала или белков состоят из тысяч и даже миллионов атомов.

И именно размер и хрупкость строения органических молекул, а не какие-то таинственные «свойства жизни», приводят к тому, что они легко распадаются при высоких температурах и теряют свои свойства даже при слабом нагревании.

Подтверждение тому было впервые получено в 50-х годах XIX века, когда химики научились синтезировать не просто вещества, идентичные выделяемым из живой ткани, но и множество других веществ с крупными молекулами, состоящими из углерода, водорода и других элементов, — вещества в природе не встречающиеся. Эти вещества, не являясь частью ни одной живой ткани на Земле, вели себя точно так же, как и природные, — легко воспламенялись, оказались капризно-нестабильными и во всех остальных отношениях — тоже «органическими».

Постепенно, ближе к концу XIX века, разграничение между органическими и неорганическими веществами перестало быть привязанным к фактору «живое — неживое» и стало основываться исключительно на химических свойствах. Поскольку в конце концов стало понятно, что возможность для создания огромных органических молекул кроется в неких особых свойствах углерода, то самым простым критерием отделения органической химии от неорганической стало наличие углерода в молекулах изучаемого вещества.

Кажется, что такое деление несправедливо, да так оно, собственно, и есть на самом деле, но не в том отношении, которое впервые приходит в голову. Способность углерода вступать в неограниченно большое количество соединений приводит к тому, что веществ, имеющих в своем составе углерод, обнаруживается гораздо больше, чем веществ, его лишенных, и с каждым годом этот разрыв все увеличивается.


Разобравшись, в первом приближении, с химическим составом пищи, теперь мы можем правильно истолковать все количественные измерения касательно дыхания.

К примеру, Лавуазье, чья величайшая заслуга перед химией состоит в первую очередь в том, что он всегда настаивал на проведении точных измерений, был первым, кто попытался установить точное количество вдыхаемого кислорода и выдыхаемого углекислого газа. Приборов, которые позволили бы ученому получить точные результаты, у него еще не было, но даже если бы Лавуазье их и получил, то сделать с ними все равно бы ничего не смог — разве что записать.

Сейчас же, после того как стал известен состав молекул веществ, обнаруживаемых в пище, можно сделать определенные выводы относительно исчезающего кислорода и появляющегося взамен него углекислого газа. Предположим, например, что глюкоза — это горючее и мы сжигаем его на огне. Тогда уравновешенное выражение для соединения глюкозы и кислорода будет выглядеть так:

С6Н12О6 + 6О2 → 6СО2 + 6Н2О.

Из этого выражения (которое невозможно было составить до того, как была установлена формула глюкозы) видно, что на каждый моль используемой глюкозы тратится шесть молей кислорода и производится шесть молей углекислого газа. На каждый моль одного, потребляемого, газа производится один моль другого газа. Поскольку один моль любого газа занимает один и тот же объем, то можно сказать, что на каждый литр одного газа получается один литр другого. В данном случае — на каждый литр потребляемого кислорода производится один литр углекислого газа.

Таким образом, отношение производимого углекислого газа к потребляемому кислороду — 1: 1, то есть 1. Лавуазье и прочие ученые интересовались этим отношением именно в связи с дыханием, так что эту величину назвали «коэффициентом дыхания», и мы говорим, что коэффициент дыхания глюкозы (да и вообще углеводов в целом) — 1.

С жирами ситуация иная. Общая формула типичной жировой молекулы — С57Н104О6, и уравновешенное выражение для соединения ее с кислородом выглядит так:

С57Н104О6 + 80О2 → 57СO2 + 52H2O.

То есть на 80 молей потребляемого кислорода производится 57 молей углекислого газа. Значит, коэффициент дыхания жиров — 57/80, или 0,713. Коэффициент дыхания белков больше, чем у жиров, но меньше, чем у углеводов. Округленные цифры выглядят так:

Коэффициент дыхания углеводов = 1

К. д. белков = 0,8

К. д. жиров = 0,7

Каким же образом мы можем теперь применить эти чисто химические соображения к явлениям живой природы? Ответ на этот вопрос был дан в 1849 году, когда два французских химика, Анри Виктор Реньо и Жюль Рейзе, разработали камеру, куда можно было помещать животных и запускать кислород в строго определенном количестве. Углекислоту, выдыхаемую этими животными, тоже можно было собирать, абсорбировать с помощью определенных химических веществ и взвешивать. Таким образом, ученые смогли измерить и объем вдыхаемого животными кислорода, и объем выдыхаемого углекислого газа. Иными словами, у них получался общий коэффициент дыхания животного, и ученые измерили его для самых разных живых существ — от червяков до собак.

У Реньо и Рейзе получилось, что коэффициент дыхания живых организмов лежит между 0,7 и 1. Более того, в этих пределах он изменялся в зависимости от предоставляемой животному пищи. Если диета животного была по преимуществу углеводной, то и коэффициент дыхания приближался к единице; при преимущественно жировой диете он опускался до 0,7.

Через пару десятков лет немецкий химик Макс фон Петтенкофер со своим товарищем физиологом Карлом фон Войтом создали аналогичное устройство, куда мог поместиться и человек. И коэффициент дыхания человека оказался таким же, как у животных, — от 0,7 до 1, в зависимости от диеты. При нормальном смешанном питании или при голодании, когда организм подчищает внутренние запасы пищи, его значение составляло примерно 0,8.

Итак, к середине столетия стало ясно, что ход реакции горения органических веществ принципиально одинаков, независимо от того, проходит она в живой ткани или вне ее. По крайней мере, соотношение потребляемого кислорода к производимому углекислому газу оказалось в точности соответствующим расчетам, основанным на изучении химических реакций неорганических веществ. Пришлось признать, что и живой организм подчиняется закону сохранения материи. Он не создает углерод из ничего и не обходится крупицами.

Но ведь еще остался закон сохранения энергии, — в то время, когда Реньо и Рейзе проводили свои эксперименты, этот закон еще только-только приобретал всеобщее признание. Окажется ли он таким же справедливым для живой материи, как и для неживой?


Глава 14.

С МАЛОЙ СКОРОСТЬЮ

Первым шагом при рассмотрении энергетического баланса живых существ должно стать определение количества химической энергии, высвобождаемой при сжигании пищи в отсутствие какой-либо жизни. Надо сжечь в бомбовом калориметре различные пищевые составляющие и замерить теплоту реакции. Надо сказать, что в этом случае пользоваться значениями молярной теплоты реакции будет неудобно, поскольку молекулы некоторых из наиболее важных составляющих пищи настолько велики, что молярная теплота реакции будет приобретать в их случае астрономические значения.

Если рассматривать только самые простые питательные вещества, то можно сойтись на следующем выражении (см. главу 8):

С6Н12О6 + 6О2 → 6СО2 + 6Н2О глюкоза

ΔН = -738 ккал.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*