KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Химия » Айзек Азимов - Энергия жизни. От искры до фотосинтеза

Айзек Азимов - Энергия жизни. От искры до фотосинтеза

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Энергия жизни. От искры до фотосинтеза" бесплатно, без регистрации.
Перейти на страницу:

Интерес к подробностям излучения тел при различной температуре к концу XIX века становился все больше. Для упрощения было введено представление о существовании тела, которое поглощает все попадающие на него лучи, какую бы частоту они ни имели. Такой предмет не отражал бы никакого излучения и представлял бы собой, таким образом, идеально «черное тело». Если такое черное тело нагреть, оно стало бы с одинаковой легкостью испускать излучение всех частот. (Тело, не являющееся «черным», то есть поглощающее излучение лишь определенных частот, именно на этих частотах и будет излучать, если его нагреть.)

Но если черное тело при нагревании действительно будет с одинаковой легкостью излучать на всех частотах, то возникает парадокс, нуждающийся в объяснении. Высокочастотных видов излучения существует гораздо больше, чем низкочастотных (так же, как чисел более триллиона существует гораздо больше, чем чисел менее триллиона). Поэтому если свет может с равной вероятностью «выбирать» среди всех доступных частот, то практически все излучение должно происходить в высокочастотном спектре, а на долю немногочисленных низкочастотных значений должно приходиться очень мало. Однако при нагревании предметов, приближенных к идеальному «черному телу», такого не происходило. Даже при сравнительно высоких температурах большая часть излучения оказывалась лежащей в видимой и более низкочастотных частях спектра. Для получения высокочастотного излучения в более-менее значительном объеме требовалось нагреть тело до весьма значительных температур.

Объяснения этому явлению не существовало вплоть до 1900 года, когда немецкому физику Максу Карлу Планку пришла в голову идея. А что, если излучение, как и материя, не является непрерывной и однородной субстанцией? Что, если излучение, как и материя, состоит из крошечных неделимых единиц? Для объяснения того факта, что высокочастотное излучение содержит больше энергии, чем низкочастотное, только и остается предположить, что оно состоит из единиц большего объема.

Планк назвал эти единицы энергии «квантами», от латинского «quantum» — «сколько», и предположил, что энергетическое содержание одного кванта пропорционально частоте излучения. Обозначив энергию как е, а частоту заданного излучения как ν (греческая буква «ню»), мы получим математическую формулу гипотезы Планка в виде

е = hν,

коэффициент пропорциональности которой h известен нам сейчас как «постоянная Планка».

Соответственно, не следует предполагать, что при нагревании предмета, будь это даже идеально черное тело, он будет с одинаковой вероятностью излучать на всех частотах. Частота гамма-лучей в миллиард раз больше частоты инфракрасных лучей, значит, на образование кванта гамма-излучения требуется в миллиард раз больше энергии, чем на образование кванта инфракрасного излучения. При низких температурах, когда энергетическое содержание предмета невелико, в нем могут образовываться вообще одни только кванты инфракрасного света. По мере роста температуры, а следовательно, и доступной для формирования квантов энергии в предмете начинают образовываться все более и более крупные кванты все более и более высокочастотного излучения. Вообще, только с использованием квантовой теории оказалось возможным точное описание свойств испускаемого черным телом излучения — ничто другое не позволяло добиться такого результата.

Теория эта оказалась настолько революционной, что в течение некоторого периода лишь немногие физики решились принять ее на вооружение. А затем в 1905 году Альберт Эйнштейн с помощью квантовой теории сумел объяснить механизм, путем которого некоторые металлы под воздействием света начинают испускать электроны.

Еще в конце XIX века было отмечено, что под лучами света некоторые металлы испускают электроны. Энергия испускаемых электронов зависела при этом не от силы света, а от его частоты. К примеру, красный свет, не важно, сколь сильный, не приводил к испусканию электронов вообще. Облучение желтым светом вызывало испускание лишь небольшого количества электронов с малым содержанием энергии. Если желтый свет был ярче и сильнее, электронов испускалось чуть больше, но их энергетическое содержание по-прежнему оставалось небольшим. А вот облучение синим светом уже приводило к испусканию достаточно энергичных электронов. Если синий свет был очень слабым, то и электронов испускалось мало, но энергетическое содержание их было при этом все таким же высоким.

Эйнштейн указал, что такое положение дел становится вполне логичным, если предположить, что энергия может поглощаться только целыми квантами. Энергии маленького кванта красного света не хватает на то, чтобы вытолкнуть электрон, и, сколь сильным ни делай красный свет, испускания электронов не добьешься, потому что перед поглощением каждого следующего кванта атом всегда успевает избавиться от предыдущего. Чуть более крупные кванты желтого света при поглощении могут выбить электрон, обладающий слабой энергией, а еще более крупные кванты синего света — электрон с еще большим энергетическим содержанием.

И только тогда ученые наконец признали и приняли квантовую теорию Планка.

* * *

Вернемся же к нашей смеси водорода с хлором, чтобы посмотреть в свете свежеобретенного знания, что же делает с ней свет. Если смесь газов просто нагревать с помощью горячей плиты или даже пламени горелки, то излучение, с помощью которого в газ поступает тепло, будет в основном инфракрасным — в случае с горелкой лишь небольшая часть его будет находиться в видимой части спектра. Поэтому кванты его будут невелики. Расщепление молекул начнется лишь тогда, когда они наберут достаточно этих квантов для приобретения определенного уровня кинетической энергии.

А кванты сравнительно высокочастотных фиолетовых и ультрафиолетовых лучей, содержащихся в солнечном свете или магниевой вспышке, гораздо крупнее. Молекула хлора, два атома которой связаны слабее, чем в аналогичных молекулах водорода или кислорода, поглотив такой квант, сразу же набирает достаточно энергии для распада. Если обозначить квант за hν, то мы можем записать это так:

hν + Cl2 → Сl + Сl.

Каждый высвобожденный таким образом атом хлора может тут же вступить в реакцию с молекулой водорода для образования хлороводорода.

Но если бы это было все, то действием каждого кванта становилось бы образование двух молекул хлороводорода и общее количество квантов, необходимое для превращения смеси двух газов в хлороводород, равнялось бы количеству имеющихся в смеси молекул хлора.

На самом же деле излучения требуется гораздо меньше. Тщательное изменение количества поставляемой энергии и образуемого хлороводорода показало, что подача одного кванта энергии может привести к образованию от 10 000 до 1 000 000 молекул хлороводорода.

Поскольку энергии одного кванта для выполнения такой задачи явно недостаточно, то остается сделать вывод, что здесь не все так просто. Общепринятое сейчас объяснение этого факта впервые выдвинул специалист в области физической химии немец Вальтер Герман Нернст. Он предположил, что расщепление молекулы хлора квантом с высоким энергетическим содержанием — это лишь первый шаг. Каждый полученный таким образом атом хлора далее вступает в реакцию с молекулой водорода, в результате чего получается не только молекула хлороводорода, но и свободный атом водорода:

Сl + Н2 → HCl + Н.

Этот свободный атом водорода, в свою очередь, вступает в реакцию с молекулой хлора, в результате которой образуется опять один свободный атом хлора:

Н + Cl2 → HCl + Сl.

Этот атом хлора опять вступает в реакцию с молекулой водорода, полученный в ее результате атом водорода — в реакцию с молекулой хлора и так далее; и на каждом повторении этого цикла будет образовываться молекула хлороводорода.

Задача полученного системой кванта энергии — лишь запустить эту цепную реакцию.

Возникает вопрос: почему же тогда цепная реакция не продолжается до тех пор, пока не обработает все до единой молекулы водорода и хлора и не превратит в хлороводород всю смесь без остатка? Дело в том, что цепная реакция не бессмертна. Рано или поздно очередная итерация реакции совершится не с положенной по счету молекулой водорода или хлора, а с какой-нибудь примесью — скажем, водой или кислородом. Необходимый для продолжения цепной реакции свободный атом хлора или водорода в этом случае образован не будет, и цепочка прервется.

Даже при полном отсутствии в реагирующих газах каких-либо примесей (а очистить смесь до такого состояния, чтобы цепная реакция продлилась достаточно долго, — весьма сложная задача!) все равно остается вероятность того, что высвобожденный атом вступит в реакцию, скажем, с молекулой вещества, из которого состоит стенка камеры, или с другим таким же свободным атомом, объединившись с ним обратно в такую же молекулу, из которой они изначально распались. То есть даже при идеальных условиях цепная реакция не будет длиться вечно.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*