KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Химия » Айзек Азимов - Энергия жизни. От искры до фотосинтеза

Айзек Азимов - Энергия жизни. От искры до фотосинтеза

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Энергия жизни. От искры до фотосинтеза" бесплатно, без регистрации.
Перейти на страницу:

Однако в соединение вступают не весь йод и не весь водород. Сколько бы времени ни протекала реакция, все равно часть йода и часть водорода не будут в ней участвовать.

Если же, наоборот, произвести некоторое количество чистого йодоводорода и нагреть его до тех же 445 °С, то он начнет разлагаться на йод и водород:

2HI → Н2 + I2.

И опять же, независимо от того, сколько времени протекает реакция, распадется не весь йодоводород. На самом деле, что бы мы ни взяли изначально — смесь ли йода и водорода или йодоводород, в итоге мы получим одно и то же соотношение: около 80% йода и водорода будут находиться в соединенном виде HI; около 20% — в разрозненном. Такие реакции, способные протекать в обоих направлениях, называют обратимыми.

Очевидно, происходит следующее: водород и йод, будучи смешанными при высокой температуре, быстро соединяются, образуя йодоводород. Образуемый йодоводород имеет тенденцию к распаду при такой температуре, но так много йода и водорода задействовано в процессе соединения, а йодоводорода еще так мало, что наблюдателю заметен только эффект соединения, и количество йодоводорода в эксперименте только увеличивается.

Однако по мере увеличения количества йодоводорода все больше и больше соединившихся молекул начинает распадаться, а одновременно с этим количество все еще продолжающих объединяться молекул водорода и йода сокращается, и скорость образования йодоводорода снижается. По мере того как скорость распада йодоводорода возрастает, а скорость образования — снижается, должен наступить момент, когда эти два процесса уравновесят друг друга. Эксперимент показывает, что этот момент наступает при соотношении йодоводорода к смеси йода и водорода 80: 20. Дальше никаких изменений мы уже не увидим, и не потому, что все процессы на этом останавливаются, а потому, что одновременно происходят два противоположно направленных и взаимно уравновешивающих друг друга процесса.

Теперь предположим, что изначально у нас имеется не смесь, а чистый йодоводород (рис. 11). Некоторые его молекулы начинают распадаться сразу же. По мере накопления водорода и йода в общем объеме в этих газах начинают проявляться тенденции к воссоединению, сила которых возрастает по мере накопления самих газов. И наоборот, по мере того, как количество молекул йодоводорода в общем объеме снижается, скорость распада оставшихся молекул также уменьшается. И опять же, как показывают наблюдения, в итоге наступает некий момент равновесия.

Когда два противоположно направленных процесса уравновешивают друг друга, это называется «состоянием химического равновесия». Само слово «равновесие» рисует в воображении картинку некоего замершего под действием разносторонне направленных сил положения дел. Это — статическое равновесие, но химическое равновесие — совсем не такое. Оба противоположно направленных процесса происходят со всей доступной им скоростью, но при этом аннулируют эффект друг друга. Это — динамическое равновесие.

Рис. 11. Отношения между скоростью реакции и химическим равновесием 

Ситуация химического равновесия, такого как в нашем примере с водородом и йодом, обычно обозначается таким образом: двумя противоположно направленными стрелочками:

Н2 + I2 ↔ 2HI.

Таким же образом можно записать и любое количество других реакций.

Ключевой момент здесь следующий: каждой реакции, при определенных условиях, присуща своя ΔН. Обратной реакции, при тех же условиях, присуща та же самая ΔН, но с обратным знаком. Об этом свидетельствует закон Лавуазье—Лапласа и, что еще важнее, первый закон термодинамики.

Следовательно, в любой обратимой реакции, если реакция в одну сторону является экзотермической, то реакция в противоположную сторону должна быть эндотермической. Применительно к водороду, йоду и йодоводороду распад йодоводорода на водород и йод — экзотермическая реакция с ΔН -6 килокалорий. Соответственно соединение водорода и йода — реакция эндотермическая, с ΔН +6 килокалорий.

Если бы теория Бертло, согласно которой спонтанными могут быть только экзотермические реакции, была верна, то йодоводород сам по себе мог бы только распадаться и не соединяться обратно. Однако наблюдения показывают совсем иную картину. Йодоводород на самом деле соединяется, причем с большим размахом, чем распадается.

Если бы Бертло был прав, такого понятия, как обратимая реакция, вообще не существовало бы — все реакции были бы однонаправленными. Поскольку наблюдения прямо опровергают это предположение, то все идеи Бертло были очень быстро преданы забвению. Вообще непонятно, почему Бертло сам не увидел очевидного и не удержался от публичного высказывания своих предположений, — но легко быть крепким задним умом.

* * *

Итак, мы продолжаем пребывать в поисках химического потенциала. Итак, один фактор, вроде бы имеющий влияние на направление, принимаемое обратимой реакцией, — это процентное соотношение соединений в общем объеме. Если количественно преобладают водород и йод, то всеохватывающее значение примет тенденция к соединению. Систему можно сбить с положения устоявшегося химического равновесия, если просто добавить в нее либо йодоводород либо смесь водорода и йода.

Первым, кто четко сформулировал это наблюдение, был французский химик Клод Луи Бертолле в 1803 году (не путать с Бертло, которого я упоминал в предыдущей части — тот жил на полвека раньше!).

Примерно с полвека теория Бертолле о влиянии массы на направление реакции не находила общего признания химиков, хотя один за другим они пробовали ее на зуб. Наконец, в 1863 году норвежские химики Като Максимилиан Гульдберг и Петер Вааге тщательно разработали этот вопрос и сформулировали правило, которое мы сейчас называем «законом сохранения массы». К сожалению, они опубликовали свою работу на норвежском языке, и ведущие немецкие и французские ученые смогли прочитать ее только пятнадцать лет спустя.

Яснее всего продемонстрировать важность этого закона можно, если представить себе обратимую реакцию в общем случае, без указания конкретных реагирующих веществ. Ее можно записать так:

А + В С + D.

Предположим, реакция осуществляется слева направо, тогда А и В переходят в С и D. Но для этого надо, чтобы эти два вещества встретились. Чем их больше в общем объеме, тем легче им встретиться и тем быстрее протекает этот процесс. Важно не общее количество, а количество в определенном объеме, то есть концентрация вещества. Можно провести такую аналогию: для юной леди, стремящейся выйти замуж, гораздо больше вариантов для выбора можно найти в сельском штате Невада, чем в массачусетском городке Холиоке, но вот беда — все кандидатуры в Неваде разбросаны по территории штата, и получается, что в Холиоке концентрация выше, а значит — выше и шансы подобрать себе подходящий вариант.

Если концентрация А удваивается, то вместе с ней удваивается и частота встреч молекул А и В, а соответственно — скорость их реакции между собой. Аналогичным будет результат удваивания и концентрации В. Если одновременно удвоится концентрация и А и В, то частота встреч молекул этих двух веществ, а значит, и скорость реакции возрастет вчетверо. Соответственно скорость реакции соединения этих веществ равна произведению концентрации одного на концентрацию второго. Для обозначения концентрации некоего вещества принято изображать его заключенным в квадратные скобки, и мы можем сказать, что

скорость реакции слева направо ~ [А][В].

Известно, что если некая величина, х, прямо пропорциональна другой величине, у> то пропорциональность можно перевести в равенство, если умножить х на некое третье число, k, именуемое в таком случае коэффициентом. Иными словами, если х ~ у, то x = ky.

Итак, получаем:

скорость реакции слева направо = k [А][В].

Конкретное значение k для той или иной реакции можно установить только в ходе эксперимента.

Но сейчас нам и не нужно конкретное значение. Достаточно просто знать, что k — это фиксированная величина.

Теперь давайте перейдем к реакции справа налево, то есть к обратной реакции слева направо, когда соединение С и D приводит к образованию А и В.

Вся вышеприведенная логика относится и к реакции справа налево, поэтому понятно, что ее скорость зависит от концентрации С и D:

скорость реакции справа налево = k’ [C][D],

где k’ — другой коэффициент, скорее всего не равный первому и поэтому отмеченный штрихом.

По достижении химического равновесия скорость реакций в обоих направлениях одинакова (первым это установил английский химик Александр Уильям Уильямсон в 1850 году), что можно описать так:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*