KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » География » Валерий Петров - Рассказы о драгоценных камнях

Валерий Петров - Рассказы о драгоценных камнях

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Валерий Петров - Рассказы о драгоценных камнях". Жанр: География издательство -, год -.
Перейти на страницу:

Существует большое число лабораторий, синтезирующих на основе корунда и шпинели искусственные драгоценные камни. Здесь имеются два направления. С одной стороны, изготовляются любые красиво окрашенные разности, а с другой — изготовители стремятся получить по возможности точное совпадение по цвету и оттенку с природными камнями. Мне пришлось видеть коллекцию чешских имитаций. Отличить их от различных природных камней без специальных опытов крайне трудно.

Рис. 21. Выращивание фианита (кубической окиси циркония)

а — начало процесса; б — конец процесса, когда весь фианит при постепенном подъеме печи уже закристаллизовался; 1 — охлаждающий контейнер; 2 — нагреватель; 3 — механизм опускания; 5 — закалка, корка кристаллов; 6 — расплав; 7 — кристаллы; наверху — пористая корка


Часто задают вопрос, а можно ли отличить природный рубин от искусственного? Надо сказать, что это очень трудная задача, и чем лучше природный рубин, тем труднее отличить его от искусственного. Свойства и природного, и искусственного рубинов совершенно одинаковы, и в некоторых случаях только мелкие включения сопутствующих минералов и форма пузырьков помогают решить этот трудный вопрос.

Кристаллизация ювелирных бериллиевых минералов из растворов. Уже довольно давно пытаются получить кристаллы изумруда. Это стремление вполне понятно. После алмаза и рубина изумруд самый дорогой драгоценный камень, а стремление получить в свои руки большие ценности всегда было одним из двигателей технической мысли.

Первые попытки синтеза изумруда относятся еще к середине прошлого столетия. Немецкий исследователь Эбельман в 1848 г. опубликовал работу, где описывает попытку получения кристаллов изумруда из порошка. Для этого он сплавлял изумрудный порошок в борной кислоте. Были получены отчетливые кристаллы, но очень мелкие. Позднее французы Отефюль и Перри получили мелкие кристаллы берилла в платиновом тигле из расплава литиевого молибдата, в котором были растворены исходные компоненты. При добавке хрома получились зеленые кристаллы. Реакция шла при 800° на протяжении от 1 до 15 суток.

Более успешны были опыты, проведенные в начале этого века. Немецкие химики фирмы «И. Г. Фарбениндустри» уже в 1934 г. предложили синтетический изумруд под названием «игмеральд», но промышленного производства этого материала не было. Позднее один из авторов этой работы, Г. Эспиг, опубликовал метод, посредством которого получали эти кристаллы. В тигле особой конструкции находился расплав молибдата лития, в котором растворяется внизу смесь окислов бериллия и алюминия, а на расплаве плавают пластинки кварца, также растворяющиеся в расплаве. На перфорированной диафрагме, разделяющей расплав, кристаллизуются кристаллы берилла (изумруда). Однако рост кристаллов очень медленный (кристалл в 3 см за год). Здесь же были получены и другие берилловые минералы (фенакит, хризоберилл).

Лаборатория Чатама в Сан-Франциско в 1935 г. получила синтетические бериллы. Самый большой полученный кристалл весил более 1000 карат, но хорошие ювелирные кристаллы весили не более 6 карат.

Конечно, сейчас имеется много новых исследований, но об этом очень мало сведений в литературе.

Кристаллы рубина, получаемые по методу Вернейля, как правило, имеют некоторые неправильности роста, обусловленные самим методом их изготовления и неравномерностью охлаждения. Поэтому многие исследователи пытаются получить из раствора более совершенные кристаллы рубина. Однако в литературе до сих пор нет указаний на промышленное получение корундовых кристаллов.

Особенно много работ по синтезу кристаллов ведут лаборатории американской телефонной компании «Белл». Они опубликовали большое количество работ по синтезу кварца, они же работают и над получением рубина из раствора. В качестве среды кристаллизации используют концентрированные растворы соды. Рост кристаллов шел в автоклаве при давлении около 2000 кг/см2 и температуре около 450–500°. Были получены пластинчатые кристаллы рубина до 1 см высоты и около 2 см в поперечнике пластинки. Чтобы окрасить кристаллы в красный цвет, в раствор вносятся хромовые соединения.

Синтез алмаза. Неоднократно делались попытки синтезировать алмаз. В прошлом столетии знаменитый французский ученый А. Муассан насыщенное углеродом железо в дуговой печи разогревал до 3000° и быстро охлаждал его, опуская в воду. В результате этого внутри железной капли, по его мнению, должно было развиться очень высокое давление. Чтобы убедиться в присутствии алмаза в продуктах такой операции, он растворил железо в кислотах. В остатке сохранилось несколько мельчайших кристалликов, которые оставляли черту на рубине. Предполагалось, что это алмаз, но уверенности не было, и справедливо. Позднейшие опыты, проведенные по тому же «рецепту», показали, что при этом получается новое соединение — карбид кремния, совершенно не известное в то время, когда вел свой синтез Муассан. Это соединение позднее было названо муассанитом. Впоследствии этот минерал был найден во многих горных породах, особенно в тех, которые поднимаются с больших глубин. Было и еще одно следствие из этого опыта Муассана. Кристаллы карбида кремния действительно оказались тверже рубина, и хотя карбид кремния был мягче алмаза, но и это было прекрасно, так как из него, или, как его называют в технике, карборунда, сейчас изготовляют абразивные круги и шлифовальные порошки. Пытались получить алмаз и другие экспериментаторы, но все было неудачно.

Впрочем, не все. В 1943 г. английский физик К. Лонсдейл обнаружила в Британском музее мелкие кристаллики с надписью «искусственный алмаз», переданные в музей еще 63 года тому назад Дж. Хеннеем. Рентгеновское исследование показало, что это несомненный алмаз, определить который ранее не удавалось. Начались поиски материала о Хеннее и выяснилось, что это был упорный шотландец, которому пришло в голову синтезировать алмаз в металлических трубках. Для него были изготовлены толстостенные трубки из мягкого ковкого железа, которые он заполнил костяным маслом с примесью металлического лития. Ему удалось найти кузнеца, который сумел заклепать эти трубки. Всего было приготовлено 80 таких трубок.

Хенней сконструировал специальную печь для нагрева трубок, по в процессе нагрева трубка неизменно взрывалась и разрывала печь. Он восстанавливал печь и повторял нагрев с тем же результатом. Так взорвалось 77 трубок. Автор опытов страшно переживал неудачу и, как рассказывают, после каждого взрыва болел несколько дней. Три трубки, однако, сохранились. Когда их открыли, то нашли там черную массу с мелкими кристалликами, часть которых была отправлена в Британский музей. Их-то и определила много лет спустя К. Лонсдейл, Сам же Хенней скончался, так и не узнав о своем огромном успехе.

Причинами неудач синтеза были, с одной стороны, несовершенство техники, а с другой, что, пожалуй, главное, — незнание причин, почему в некоторых случаях углерод кристаллизуется в форме графита — самого мягкого минерала, а в других— дает твердейший алмаз. Выяснением последней причины занялся советский физик А. Н. Лейпунский, который с помощью термодинамики показал, что алмаз устойчив при температуре выше 1700–1800° и давлении 60 тыс. атм, однако указывал и на возможность использования железа в качестве катализатора, что, может быть, позволит снизить величину температуры и давления. Лабораторная техника того времени не позволяла получать таких высоких давлений, поэтому проверить выводы Лейпунского было невозможно.

В военное и послевоенное время работы по изучению синтеза алмаза продолжались главным образом в США. Особенное значение имели работы П. Бриджмена, который изобрел пресс, могущий создать в камере давление более 100 тыс. атм. Синтезом алмаза заинтересовались промышленные компании США и Швеции, и 15 февраля 1953 г. швед Э. Лундстрем на аппаратуре, близкой к аппаратуре Бриджмена, уверенно получил первый алмаз. Повторные опыты подтвердили правильность методики. Однако по совершенно не ясной причине, то ли из соображений секретности, то ли потому, что не придали значения своим результатам, шведы не опубликовали результатов своих опытов и не запатентовали разработанный процесс.

16 декабря 1954 г. американцу X. Т. Холлу также удалось синтезировать алмаз. Процесс был запатентован, и результаты опытов опубликованы; затем и шведы сообщили о своих работах. После этого к исследованиям по синтезу алмаза с новой энергией приступили во всех странах.

Советский синтетический алмаз был получен академиком Л. Ф. Верещагиным в Институте физики высоких давлений. Об этом его достижении сообщил в 1960 г. президент Академии наук М. В. Келдыш. К этому времени все уже было готово для получения алмаза в СССР в промышленных количествах.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*