Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Расчёты очень длинны и сложны, но основная идея Хокинга проста. Как обсуждалось выше, согласно соотношению неопределённостей даже в пустом пространстве кишит рой виртуальных частиц, на мгновение вырывающихся из вакуума и аннигилирующих друг с другом. Этот хаотический процесс происходит и снаружи чёрной дыры, рядом с её горизонтом событий. И Хокинг понял, что гравитационная сила чёрной дыры может передать энергию паре виртуальных частиц, засасывая внутрь себя одну частицу из пары. Если одна из частиц исчезла в бездне чёрной дыры, то вторая остаётся без партнёра, с которым она может аннигилировать. Вместо этого, как показал Хокинг, уцелевшей частице передаётся энергия гравитационного поля чёрной дыры и, пока её партнёра засасывает в бездну, она выталкивается прочь от чёрной дыры. Хокинг понял, что для наблюдателя, уютно устроившегося на безопасном расстоянии от чёрной дыры, и регистрирующего совокупный результат этого непрерывно происходящего вокруг чёрной дыры разлучения пар, будет казаться, что из чёрной дыры исходит непрерывное излучение. Чёрные дыры светятся.
Более того, Хокингу удалось вычислить температуру, которую наблюдатель приписал бы этому излучению: оказалось, что она определяется напряжённостью гравитационного поля на горизонте чёрной дыры, в точном согласии с аналогией между чёрными дырами и термодинамикой.{115} Бекенштейн был прав, и результаты Хокинга показали, что его аналогию следует воспринимать всерьёз. На самом деле результаты показали, что это даже не аналогия — это тождественность. У чёрной дыры есть энтропия. У чёрной дыры есть температура. И законы физики гравитации чёрной дыры — не что иное, как законы термодинамики в крайне необычных условиях. В этом состоял ошеломляющий результат исследований Хокинга 1974 г.
Чтобы читатель понял, о каких масштабах величин идёт речь, приведём пример: чёрная дыра с массой, втрое превышающей массу Солнца, будет, после учёта всех эффектов, иметь температуру примерно 10−8 K. Не нуль — но только чуть теплее. Чёрные дыры не точно черны — но только чуть светлее. К сожалению, по этой причине излучение чёрной дыры очень слабое, и его невозможно обнаружить экспериментально. Однако есть исключение. Из вычислений Хокинга следует ещё один факт: чем меньше масса чёрной дыры, тем выше её температура, и тем сильнее её излучение. Например, излучение чёрной дыры массой с небольшой астероид сравнимо с излучением водородной бомбы мощностью в миллион мегатонн, причём это излучение сконцентрировано на шкале электромагнитных волн в гамма-области. Ночами астрономы пытались поймать такое излучение, но улов был невелик: лишь несколько кандидатов с малыми шансами на успех. Это наводит на мысль, что если чёрные дыры с такими малыми массами и существуют, то они крайне редки.{116} Как часто шутит Хокинг, это плохо, так как если бы предсказанное излучение чёрных дыр обнаружили, Нобелевская премия была бы ему гарантирована.{117}
По сравнению с этой мизерной температурой в миллионные доли градуса, вычисление энтропии чёрной дыры массой три массы Солнца даёт грандиозное число: единицу с 78 нулями! И чем массивнее дыра, тем энтропия больше. Успех расчётов Хокинга недвусмысленно показывает, какой несусветный беспорядок творится внутри чёрной дыры.
Но беспорядок чего? Как мы видели, чёрные дыры — крайне примитивные объекты, в чём же причина этого беспорядка? Здесь расчёты Хокинга полностью немы. Его частичное объединение теории относительности и квантовой теории можно использовать для вычисления значения энтропии чёрной дыры, но постичь её микроскопический смысл с помощью такой теории невозможно. Почти четверть века величайшие физики пытались понять, какими микроскопическими свойствами чёрных дыр можно объяснить такое значение их энтропии. Без действительно надёжного сплава общей теории относительности и квантовой теории могли возникать проблески ответа, но тайна так и оставалась нераскрытой.
Ваш выход, теория струн!Но так было до конца 1996 г., пока Строминджер и Вафа, опираясь на более ранние результаты Сасскинда и Сена, не написали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга», появившуюся в электронном архиве статей по физике. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определённого класса чёрных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга и наносил последние штрихи на картину, начатую более двадцати лет назад.
Строминджер и Вафа сосредоточили внимание на так называемых экстремальных чёрных дырах. Такие чёрные дыры наделены зарядом (можно считать его электрическим зарядом) и, кроме того, имеют наименьшую возможную массу, совместимую с этим зарядом. Как видно из приведённого определения, подобные чёрные дыры тесно связаны с рассмотренными в главе 12 БПС-состояниями. И Строминджер с Вафой выжали из этой связи всё, что могли. Они продемонстрировали, что можно построить (теоретически, разумеется) экстремальные чёрные дыры, если выбрать конкретный набор БПС-бран (определённых размерностей), а затем связать эти браны, действуя по точной математической схеме. Строминджер и Вафа показали, что подобно тому, как можно построить (ещё раз, теоретически!) атом, если взять набор кварков и электронов, а затем точно сгруппировать их в протоны и нейтроны с вращающимися по орбитам электронами, некоторые из недавно обнаруженных компонентов теории струн можно слепить вместе и получить определённые чёрные дыры.
В реальном мире образование чёрных дыр является только одним из возможных вариантов гибели звёзд. После того, как за миллиарды лет ядерного синтеза звезда сжигает весь запас ядерного топлива, она оказывается неспособной далее компенсировать сжимающую громадную силу гравитации направленным наружу давлением. Для широкого класса условий это приводит к катастрофическому взрыву огромной массы звезды: под действием собственной силы тяжести она коллапсирует, образуя чёрную дыру. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили «конструктивный» подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать (в воображении теоретика) по строгому набору правил — путём кропотливой, неспешной и дотошной сборки в один механизм точного набора бран, открытых во время второй революции в теории суперструн.
Сила этого подхода сразу стала очевидной. Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры, Строминджер и Вафа смогли легко вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры — энтропией, предсказанной Бекенштейном и Хокингом. При этом обнаружилось идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена.{118}
Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Наше понимание теории струн до сих пор остаётся слишком грубым для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Но сейчас видно, что теория струн даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. И это свойство чёрных дыр тесно связано с предсказанием Хокинга об их излучении, которое, в принципе, может быть проверено экспериментально. Последнее, разумеется, означает, что сначала нужно точно зарегистрировать на небе чёрную дыру, а затем сконструировать оборудование, достаточно чувствительное для регистрации её излучения. Если бы чёрные дыры были не такими чёрными, то сделать это можно было бы уже сегодня. Несмотря на то, что экспериментальная программа ещё не увенчалась успехом, полученный результат говорит о том, что пропасть между теорией струн и реальностью можно преодолеть. Даже Шелдон Глэшоу, убеждённый противник теории струн в 1980-е гг., недавно признался, что «когда струнные теоретики говорят о чёрных дырах, речь идёт едва ли не о наблюдаемых явлениях, и это впечатляет».{119}