KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории" бесплатно, без регистрации.
Перейти на страницу:

Тем не менее в рамках теории возмущений можно предсказать движение Земли в Солнечной системе с высочайшей точностью. Огромная масса Солнца по сравнению с массами всех других тел Солнечной системы, как и близость Солнца к Земле по сравнению с расстояниями от Земли до других звёзд, свидетельствуют о том, что Солнце оказывает доминирующее воздействие на движение Земли. Таким образом, в первом приближении можно учитывать только гравитационное воздействие Солнца. Для многих приложений этого вполне достаточно. Если окажется необходимым, можно уточнить это приближение, последовательно учитывая гравитационное воздействие следующих по степени влияния тел, например, Луны или тех планет, которые в данный момент проходят ближе всего к Земле. По мере того как паутина гравитационных взаимодействий будет становиться более запутанной, вычисления могут стать сложными, но это не должно затемнять смысл философии теории возмущений: гравитационное взаимодействие между Землёй и Солнцем даёт нам приближённое понимание движения Земли, а совокупность остальных гравитационных взаимодействий последовательно учитывается всё уменьшающимися поправками.

В этом примере подход в рамках теории возмущений применим, так как существует доминирующее физическое воздействие, допускающее сравнительно простое теоретическое описание. Это не всегда так. Например, если нужно рассчитать движение трёх сравнимых по массе звёзд, вращающихся в тройной системе одна вокруг другой, нельзя указать, взаимодействие каких звёзд будет доминирующим. Поэтому нельзя дать грубую оценку, к которой затем можно было бы делать малые поправки, обусловленные другими эффектами. Если попытаться использовать теорию возмущений и выбрать для грубой оценки, например, взаимодействие между двумя звёздами, быстро выяснится, что подход неприменим. Вычисленные «поправки» за счёт влияния третьей звезды будут не малыми, а столь же существенными, что и первое грубое приближение. Ситуация знакомая: движения трёх человек, танцующих танец «хора» мало напоминают движения пары, танцующей танго. Большие поправки означают, что исходное приближение было выстрелом мимо цели, а вся схема была карточным домиком. Важно понимать, что дело не просто в учёте большой поправки третьей звезды. Здесь действует эффект домино: большая поправка сильно влияет на движение двух звёзд, что, в свою очередь, сильно влияет на движение третьей звезды, которое опять-таки влияет на движение двух звёзд, и т. д. Все нити гравитационной паутины одинаково важны, и должны рассматриваться одновременно. Единственным спасением в таких случаях часто бывает метод грубой силы — компьютерное моделирование совместного движения.

Этот пример демонстрирует, насколько при использовании теории возмущений важно определить, является ли предполагаемое первое приближение действительно приближением, и, если оно им является, сколько и каких более точных деталей следует учитывать, для достижения требуемой точности. Как мы сейчас обсудим, эти вопросы особенно важны при применении теории возмущений к изучению физических процессов в микромире.

Использование теории возмущений в теории струн

Физические процессы в теории струн порождаются фундаментальными взаимодействиями между колеблющимися струнами. Как обсуждалось в главе 6[18], в эти взаимодействия входят распады и слияния струнных петель, подобные тем, которые изображены на рис. 6.7 и продублированы для удобства читателя на рис. 12.3. Занимающиеся струнами теоретики показали, как схематическому изображению на рис. 12.3 поставить в соответствие точную математическую формулу, описывающую влияние каждой из сталкивающихся струн на движение другой. (Эта формула имеет разный вид в пяти теориях струн, но мы на время будем пренебрегать такими тонкостями.) Если бы не было квантовой теории, на этой формуле и заканчивалось бы изучение взаимодействия струн. Но в силу соотношения неопределённостей возникает микроскопический хаос, в котором происходит непрерывное рождение пар струна/антиструна (двух струн с противоположными колебательными модами) за счёт одолженной у Вселенной энергии, и быстрая аннигиляция этих пар, в результате которой одолженная энергия возвращается Вселенной. Такие пары струн, рождённые из квантового хаоса, живущие за счёт одолженной энергии и, следовательно, обязанные быстро слиться в одну петлю, называют парами виртуальных струн. И хотя их жизнь скоротечна, присутствие этих дополнительных пар виртуальных струн влияет на детальную структуру взаимодействия.

Рис. 12.3. Струны взаимодействуют, соединяясь и разделяясь

Схематически этот процесс изображён на рис. 12.4. Две исходные струны сливаются вместе в точке а, образуя единую петлю. Некоторое время эта петля движется, но в точке б квантовые флуктуации приводят к рождению виртуальной пары струн, которая далее аннигилирует в точке в, и в результате снова получается одна петля. Наконец, в точке г эта струна отдаёт энергию, распадаясь на пару струн, которые разлетаются в разных направлениях. Из-за наличия одной петли в центре рис. 12.4 физики называют это «однопетлевым» процессом. Как и для взаимодействия, изображённого на рис. 12.3, для этой диаграммы можно выписать точную математическую формулу, в которой учитывается влияние рождения пары виртуальных струн на движение двух исходных.

Рис. 12.4. Квантовый хаос приводит к рождению пары струна/антиструна (б) и её уничтожению (в), что усложняет взаимодействие

Однако это ещё не всё: краткосрочные извержения виртуальных струн вследствие квантовых флуктуаций могут произойти любое число раз, что приведёт к рождению последовательных виртуальных пар. При этом получатся диаграммы с большим количеством петель, как показано на рис. 12.5. Каждая диаграмма даёт простой и удобный способ описания соответствующего физического процесса. Налетающие струны сливаются, квантовый хаос вызывает раздвоение получившейся петли на виртуальную пару, струны этой пары движутся, затем аннигилируют с образованием одной петли, которая далее снова распадается на виртуальную пару и т. д. Как и для других диаграмм, для каждого из этих процессов есть математические формулы, в которых учитывается влияние на движение исходной пары струн.{101}

Рис. 12.5. Квантовый хаос может привести к рождению и уничтожению длинных последовательностей пар струна/антиструна

Более того, аналогично примеру с механиком, определившим конечную стоимость ремонта сложением его исходной оценки $900 с последующими поправками $50, $27, $10 и $0,93, и аналогично уточнению описания движения Земли при добавлении к влиянию Солнца меньшего влияния Луны и других планет, теоретики показали, что взаимодействие двух струн можно вычислить путём сложения математических выражений для диаграмм без петель (без пар виртуальных струн), с одной петлёй (одной парой виртуальный струн), с двумя петлями (двумя парами виртуальных струн) и т. д., как показано на рис. 12.6.

Рис. 12.6. Суммарное воздействие одной струны, налетающей на другую, есть результат сложения воздействий, включающих диаграммы с увеличивающимся числом петель

В точном расчёте требуется сложить математические выражения для всех этих диаграмм с растущим числом петель. Но так как диаграмм бесконечно много, а соответствующие математические вычисления с ростом числа петель усложняются, эта задача неразрешима. И здесь занимающиеся струнами теоретики берут на вооружение теорию возмущений, предполагая, что разумная грубая оценка даётся процессом без петель, а диаграммы с петлями дают поправки, значения которых уменьшаются по мере увеличения числа петель.

В действительности, почти всё, что мы знаем о теории струн, включая бо́льшую часть сведений из предыдущих глав, было открыто физиками при проведении подробных и тщательных вычислений по теории возмущений. Но чтобы удостовериться в точности полученных результатов, необходимо выяснить, являются ли грубые приближения, в которых учитывается только несколько первых диаграмм рис. 12.6, а все остальные диаграммы опущены, действительно хорошим приближением.

Приближает ли к ответу приближение?

Нельзя сказать заранее. Хотя математические формулы, соответствующие диаграммам, значительно усложняются при увеличении числа петель, теоретикам удалось установить одно очень важное свойство. Подобно тому, как вероятность разрыва каната на две части при сильном растяжении и раскачивании определяется его прочностью, вероятность распада струны с образованием виртуальной пары при квантовых флуктуациях также определяется некоторым параметром. Этот параметр называют константой связи струны (как мы вскоре увидим, в каждой из пяти теорий струн своя константа связи). Это название довольно наглядно: значение константы связи струны определяет, насколько сильно квантовые колебания трёх струн (исходной струны и двух виртуальных струн, на которые она распадается) зависят друг от друга, т. е. насколько сильно три струны связаны между собой. Вычисления показывают, что при больших значениях константы связи струны вероятность того, что квантовые флуктуации приведут к распаду струны (и её последующему воссоединению), становится больше, а при малых значениях константы связи вероятность такого краткосрочного образования виртуальных струн мала.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*