KnigaRead.com/

Яков Гегузин - Капля

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Яков Гегузин, "Капля" бесплатно, без регистрации.
Перейти на страницу:

Идея Кельвина изумительна по простоте и очевидности, и мы в своей лаборатории решили воплотить ее в реаль­ных каплях и металлических бездонных цилиндрах и ста­канах. Все, что изображено на рисунке, мы разместили под стеклянным колпаком, оградив от различных внешних воздействий, а от цилиндров С и С' вывели из колпака проводники и присоединили их к двум одинаковым метал­лическим шарикам диаметром 1 см. Шарики укрепили на специальной подставке, и расстояние между ними сделали неизменным — 1 мм. Затем, открыв зажимы, дали возмож­ность каплям падать и начали наблюдать: подсчитывали число упавших капель и следили, когда между шарами проскочит искра.

В тот момент, когда проскочила искра, между шарика­ми была разность потенциалов 3000 вольт! Никто в наши дни не пользуется капельным методом, чтобы создавать высокие напряжения,— существуют способы помощнее... И все же нельзя не понять Эйнштейна, который был вос­хищен кельвиновской идеей.

В мемориальной статье Эйнштейн рассказал еще об одной идее Кельвина, имеющей прямое отношение к кап­ле. Кельвин заинтересовался следующим вопросом: как зависит давление пара жидкости вблизи поверхности от степени ее искривленности? Если рассуждать предметно, то речь идет о том, насколько отличается давление пара вблизи изогнутой поверхности водяной капли от давления пара вблизи плоской поверхности воды, налитой в широ­кое блюдце. В поисках ответа па этот вопрос Кельвин рассуждал так. Допустим, что в сосуд с жидкостью по­гружена тонкая трубка, внутренний радиус которой R. Если жидкость не смачивает материал, из которого сдела­на трубка, то ее уровень в трубке расположится ниже, чем в широком сосуде, в который налита жидкость. Произой­дет это по причине очевидной: в связи с тем что жидкость не смачивает стенок трубки, поверхность жидкости в ней будет выпуклой, полусферической, именно поэтому к жид­кости будет приложено давление, направленное внутрь, то самое лапласовское давление, с которым мы уже встре­чались, обсуждая опыт Плато. Под влиянием этого давле­ний уровень жидкости в трубке опустится ровно настолько, чтобы давление из-saразности уровней жидкости в труб­ке и вне ее в точности равнялось лапласовскому. Его величину мызнаем: Рл = 2α/R Разность уровней h обусловит давление Р = ρgh. Буквами обозначены следующие ве­личины: α — поверхностное натяжение жидкости, ρ — ее плотность, g — ускорение силы тяжести. Приравняв два эти давления, мы убедимся, что разница уровней h = 2α/ρgR .

Таков результат первого этапа рассуждений Кельвина.

 

К расчету влияния кривизны поверхности жидкости на дав­ление пара над ней


Второй этап — естественное продолжение первого. Над всей поверхностью жидкости — и той, которая в трубке, и той, которая в широком со­суде,— имеется пар этой жид­кости, однако не везде дав­ление, оказываемое им на жидкость, одинаково: несколько большим оно будет над по­верхностью жидкости в труб­ке, так как слой пара над ней толще на величину h. Очевид­но, дополнительное давление этого слоя равно ΔР = ρ0gh, где ρ0 — плотность газа, которая много меньше плот­ности жидкости. Величину hмы знаем — она была найдена на первом этапе рассужде­ний — и, следовательно, можем определить величину ΔР. Она очень важна, и поэтому формулу, которая определяет эту величину, мы вынесем на отдельную строку:

 

По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».

Можно понять восхищение, испытанное Эйнштейном, когда он ознакомился с логикой рассуждений и формулой Кельвина. Ведь, казалось бы, Кельвин обсуждал совсем частный пример: широкий сосуд, в нем жидкость, в жид­кости капилляр и т. д. А пришел к закону природы огром­ной важности и выразил его формулой, в которой ничего не содержится от того частного примера, который обсуж­дался. Разве что только R — радиус тонкой трубочки. Но ведь трубочка, как оказалось, нужна была только для

того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.

Вспомним о капле — она вся ограничена изогнутой по­верхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельви­на: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов — далее мы с ними еще встретимся, а здесь, вместе с Эйн­штейном, восхитимся талантом Кельвина — его проница­тельным умом и великолепной логикой.


Капля пустоты


Много лет подряд вместе с моим покойным учителем Бори­сом Яковлевичем Пинесом мы занимались изучением по­ристых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты — поре в кристалле. А сейчас, к сожа­лению, спросить уже некого и остается лишь стро­ить догадки, сопоставляя факты и отрывки случайных раз­говоров.

Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыс­лить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рож­дения образа капли пустоты можно проследить, как вя­жется логическое кружево мысли ученого, где сосущест­вуют и конкурируют фантазия и строгая формальная ло­гика.

Борис Яковлевич не очень был склонен к аналогиям, упрощенным моделям, картинам, иллюстрирующим мысль. Он часто повторял, что картина — образование дву­мерное и, следовательно, неглубокое. Аналогия может появиться позже, а вначале должна быть формула, числен­ная оценка. И еще, посмеиваясь, он любил говорить о том, что иных формулы гипнотизируют, поскольку формула — это математика, а математика, как известно, наука точ­ная. Это преувеличенное почтение к формулам обычно испытывают люди, которые никогда не создавали их и поэтому не чувствуют ни их слабостей, ни таящихся в них возможностей.

Первая работа Бориса Яковлевича, посвященная изуче­нию поведения пор в кристаллах (она появилась еще в 1946 году), начинается с анализа давно известной формулы лорда Кельвина, которая устанавливает связь между давлением пара вблизи изогнутой поверхности капли (РR), ее радиусом (R) и давлением пара вблизи плоской поверхности жидкости, из которой капля состоит (Р0). Вот эта формула:


В нее входят величины поверхностного натяжения (α), объема, приходящегося на один атом в жидкости (ω), тем­пературы (Т) и некоторая постоянная величина к, так на­зываемая постоянная Больцмана.


 


Легко заметить, что в формуле Кельвина нет ничего спе­цифически «жидкого» и ее можно применять и к твердым закристаллизовавшимся каплям. Надо только при этом помнить, что поверхностное натяжение зависит от ориен­тации кристаллографических плоскостей, охраняющих застывшую каплю. Но это деталь, а в главном формула применима к твердым кристаллическим каплям. Из фор­мулы следует, что, чем меньше капля, т. е. чем меньше ее радиус, тем на большую величину давление пара вблизи ее поверхности превосходит давление пара вблизи плоской поверхности вещества, из которого капля состоит.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*