Простое начало. Как четыре закона физики формируют живой мир - Партасарати Рагувир
Глава 5. Мембраны: жидкая кожа
1 Еще больше белков отдаленно связаны с мембранами: Dobson L. et al. The human transmembrane proteome. Biol. Direct. 2015; 10: 31; Almén M. S. et al. Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biology. 2009; 7: 50.
2 Grakoui A. et al. The immunological synapse: A molecular machine controlling T cell activation. Science. 1999; 285: 221–227; Bromley S. K. et al. The immunological synapse. Annu. Rev. Immunol. 2001; 19: 375–396.
3 Piguet V., Sattentau Q. Dangerous liaisons at the virological synapse. J. Clin. Invest. 2004; 114: 605–610.
4 Waksman S. A. The Conquest of Tuberculosis. Berkeley: University of California Press, 1964.
5 Leading causes of death, 1900–1998. Centers for Disease Control (USA) (https://www.cdc.gov/nchs/data/dvs/lead1900_98.pdf).
6 WHO global tuberculosis report. World Health Organization. 2017 (http://www.who.int/tb/publications/global_report/en/).
7 Twitchell D. C. The vitality of tubercle bacilli in sputum. Transactions of the National Association for the Study and Prevention of Tuberculosis, Annual Meeting. 1905; 221–230; Smith C. R. Survival of tubercle bacilli. American Review of Tuberculosis. 1942; 45: 334–345.
8 Crowe J. H. et al. Anhydrobiosis. Annu. Rev. Physiol. 1992; 54: 579–599.
9 О работе над трегалозными липидами в моей лаборатории: Harland C. W. et al. The M. tuberculosis virulence factor trehalose dimycolate imparts desiccation resistance to model mycobacterial membranes. Biophys. J. 2008; 94: 4718–4724; Harland C. W. et al. Synthetic trehalose glycolipids confer desiccation resistance to supported lipid monolayers. Langmuir. 2009; 25: 5193–5198.
10 Baumgart T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. 2007; 104: 3165–3170.
11 Rayermann S. P. et al. Hallmarks of reversible separation of living, unperturbed cell membranes into two liquid phases. Biophys. J. 2017; 113: 2425–2432.
12 Seo A. Y. et al. AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation. eLife. 2017; 6: e21690.
13 Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972; 175: 720–731.
Глава 6. Предсказуемая случайность
1 Mazo R. M. Brownian Motion: Fluctuations, Dynamics, and Applications. Oxford, UK: Clarendon Press, 2002; Hänggi P., Marchesoni F. 100 years of Brownian motion. Chaos. 2005; 15: 026101–026105.
2 Berg H. C. Random Walks in Biology. Princeton, NJ: Princeton University Press, 1993.
3 Luo L. Why is the human brain so efficient? Nautilus. 2018 (http://nautil.us/issue/59/connections/why-is-the-human-brain-so-efficient).
4 Redner S. A Guide to First-Passage Processes. Cambridge, UK: Cambridge University Press, 2007.
5 О моторных белках и транспортировке грузов в нейронах см. Yagensky O. et al. The roles of microtubule-based transport at presynaptic nerve terminals. Front. Synaptic Neurosci. 2016; 8: 3.
6 Purcell E. M. Life at low Reynolds number. American Journal of Physics. 1977; 45: 3–11.
Глава 7. Сборка эмбрионов
1 Pinto-Correia C. The Ovary of Eve. Chicago: University of Chicago Press, 1998.
2 Gilbert S. F. Developmental Biology (6th ed.). Sunderland, MA: Sinauer Associates, 2000.
3 Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980; 287: 795–801; Haskett D. R. Hedgehog signaling pathway. Embryo Project Encyclopedia. 2015 (http://embryo.asu.edu/handle/10776/8685).
4 Изображение белка Hedgehog мушки Drosophila melanogaster основано на структуре 2IBG из Protein Data Bank: https://www.rcsb.org/structure/2IBG; McLellan J. S. et al. Structure of a heparin-dependent complex of hedgehog and ihog. Proc. Natl. Acad. Sci. 2006; 103: 17208–17213. Изображение человеческого белка Sonic hedgehog основано на структуре 3MXW из Protein Data Bank: https://www.rcsb.org/structure/3MXW; Maun H. R. et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J. Biol. Chem. 2010; 285: 26570–26580.
5 Towers M. et al. Insights into bird wing evolution and digit specification from polarizing region fate maps. Nature Communications. 2011; 2: 426.
6 Tarazona O. A. et al. Evolution of limb development in cephalopod mollusks. eLife. 2019; 8: e43828.
7 Kim S. et al. Epigenetic regulation of mammalian hedgehog signaling to the stroma determines the molecular suptype of bladder cancer. eLife. 2019; 8: e43024.
8 Turing A. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society London, B: Biological Sciences. 1952; 237: 37–72.
9 Forrest K. M., Gavis E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Current Biology. 2003; 13: 1159–1168; Lucas T. et al. 3 minutes to precisely measure morphogen concentration. PLOS Genetics. 2018; 14: e1007676.
10 Ilsley G. R. et al. Cellular resolution models for even skipped regulation in the entire Drosophila embryo. eLife. 2013; 2: e00522; Petkova M. D. et al. Optimal decoding of cellular identities in a genetic network. Cell. 2019; 176: 844–855.e15.
11 Dubuis J. O. et al. Positional information, in bits. Proc. Natl. Acad. Sci. 2013; 110: 16301–16308.
12 Eddison M. et al. Notch signaling in the development of the inner ear: Lessons from Drosophila. Proc. Natl. Acad. Sci. 2000; 97: 11692–11699.
13 Doe C. Q., Goodman C. S. Early events in insect neurogenesis: II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Developmental Biology. 1985; 111: 206–219.
14 Об открытии роли латерального торможения в структурировании развивающегося организма см. Bussell K. Milestone 3 (1937): Inhibit thy neighbour. Nat. Rev. Neurosci. 2004. О белке Notch, его расщеплении и роли в клеточной сигнализации и в латеральном торможении: Gordon W. R. et al. The molecular logic of Notch signaling – a structural and biochemical perspective. Journal of Cell Science. 2008; 121: 3109–3119; Sjöqvist M., Andersson E. R. Do as I say, Not (ch) as I do: Lateral control of cell fate. Developmental Biology. 2019; 447: 58–70.
15 Gomez C. et al. Control of segment number in vertebrate embryos. Nature. 2008; 454: 335–339.
16 Cooke J., Zeeman E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 1976; 58: 455–476.
17 Palmeirim I. et al. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell. 1997; 91: 639–648; Oates A. C. et al. Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock. Development. 2012; 139: 625–639.
18 What is the future of developmental biology? Cell. 2017; 170: 6–7.
Глава 8. Конструирование органов