KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории" бесплатно, без регистрации.
Перейти на страницу:

«Грейс, — говорит Джордж, — мои вычисления по теории струн показывают, что если радиус циклического измерения равен 10, то энергии наблюдаемых мной струн должны соответствовать табл. 10.1. Я провёл масштабные эксперименты на новом ускорителе с энергиями порядка планковской, и результаты в точности подтвердили это предположение. Следовательно, я совершенно определённо заявляю, что радиус циклического измерения равен R = 10». В свою очередь, Грейс приводит в защиту своего результата в точности те же доводы, но её вывод состоит в том, что зарегистрированы значения энергий из табл. 10.2, и радиус, таким образом, равен R = 1/10.

Озарённая проблеском интуиции Грейс демонстрирует Джорджу, что несмотря на разное расположение элементов эти таблицы тождественны. Джордж, который, как всем известно, соображает несколько медленнее Грейс, отвечает: «Но как такое возможно? Я знаю, что, согласно принципам квантовой теории и свойствам намотанных струн, различные значения радиуса должны приводить к разным возможным значениям энергий и зарядов струн. И если эти значения согласуются, то и значения радиуса также должны находиться в согласии».

Грейс, во всеоружии своего нового понимания физики струн, отвечает: «То, что Вы говорите, почти, но не полностью правильно. Да, обычно верно, что для двух различных радиусов получаются различные допустимые энергии. Однако в частном случае, когда два значения радиуса обратно пропорциональны друг другу, например, как 10 и 1/10, допустимые энергии и заряды на самом деле одинаковы. Судите сами: то, что Вы назвали бы колебательной модой, я назвала бы топологической модой. Но природе безразлично, на каком языке мы говорим. Физические явления обусловлены свойствами фундаментальных составляющих — массами (энергиями) частиц и переносимыми ими зарядами. Не имеет значения, равен ли радиус R или 1/R: полный список значений свойств фундаментальных составляющих теории струн один и тот же».

В минуту прозрения Джордж отвечает: «Мне кажется, я понимаю. Хотя моё и Ваше детальное описание струн — их намотка на циклическое измерение или особенности их колебательного поведения — могут отличаться, полный список их физических характеристик одинаков. А так как физические свойства Вселенной зависят от свойств фундаментальных составляющих, нет ни различия между радиусами, которые обратно пропорциональны друг другу, ни способа определить это различие». Именно так.

Три вопроса

Здесь читатель может спросить: «Будь я существом, живущим на вселенной Садового шланга, я просто измерил бы длину окружности шланга рулеткой и однозначно определил бы радиус — без всяких „но“ и „если“. Так к чему вся эта чепуха о невозможности отличить два разных радиуса? Кроме того, разве теория струн не распрощалась с масштабами меньше планковской длины — зачем же эти примеры циклических измерений с радиусами в доли планковской длины? И, если уж на то пошло, кого волнует эта двумерная вселенная Садового шланга? Что всё это добавляет к пониманию случая всех измерений?»

Начнём с третьего вопроса; ответ на него поставит нас лицом к лицу с двумя первыми.

Хотя обсуждение касалось вселенной Садового шланга, ограничение одним протяжённым и одним циклическим пространственными измерениями было выбрано лишь для простоты. Если бы мы рассматривали три протяжённых пространственных измерения и шесть циклических измерений — простейшее из всех многообразий Калаби — Яу, — результат был бы в точности тем же самым. У каждой окружности есть радиус, и если его заменить обратным радиусом, получится физически идентичная вселенная.

Этот вывод можно даже продвинуть на один гигантский шаг вперёд. В нашей Вселенной наблюдаемы три пространственных измерения, каждое из которых, согласно астрономическим наблюдениям, имеет протяжённость порядка 15 миллиардов световых лет (световой год равен примерно 9,46 триллионам километров, так что это расстояние равно примерно 142 миллиардам триллионов километров). Как отмечалось в главе 8, у нас нет данных о том, что происходит за этими границами. Мы не знаем, уходят ли эти измерения в бесконечность или замыкаются сами на себя, образуя огромные окружности — всё это может иметь место за пределами чувствительности современных телескопов. Если справедливо последнее предположение, то путешествующий всё время в одном направлении астронавт в конце концов обойдёт вокруг Вселенной, как Магеллан вокруг Земли, и прилетит назад в исходную точку.

Следовательно, хорошо знакомые протяжённые измерения могут тоже иметь форму окружностей, и поэтому они попадают под действие принципа физической неразличимости пространств с радиусами R и 1/R теории струн. Приведём несколько грубых оценок. Если привычные нам измерения являются циклическими, то их радиусы должны быть, как говорилось выше, около 15 миллиардов световых лет, т. е. примерно R = 1061 в единицах планковской длины, и эти радиусы должны увеличиваться при расширении Вселенной. Если теория струн верна, то картина физически эквивалентна ситуации, в которой привычные нам измерения имеют невообразимо малый радиус порядка 1/R = 1/1061 = 10−61 в единицах планковской длины! И это — хорошо нам знакомые измерения в альтернативном описании по теории струн. На самом деле, на этом взаимном языке эти крошечные окружности будут со временем становиться ещё меньше, так как 1/R уменьшается, когда R растёт. Кажется, мы основательно сели в лужу. Как такое возможно в принципе? Как двухметровый человек может втиснуться в такую невообразимо микроскопическую вселенную? Как такая невидимая крупинка может быть физически эквивалентной огромным просторам небес? И, более того, здесь сам собой перед нами встаёт второй вопрос. Считалось, что теория струн налагает запрет на зондирование Вселенной на масштабах, меньших планковской длины. Но если радиус R больше планковской длины, то 1/R с необходимостью меньше неё. Так что же происходит на самом деле? Ответ, который также затрагивает первый из трёх поставленных вопросов, выдвигает на первый план важные и нетривиальные свойства пространства и расстояния.

Два взаимосвязанных понятия расстояния в теории струн

В нашем понимании мира расстояние является настолько фундаментальным понятием, что очень легко недооценить всю его глубину и тонкость. Вспоминая поразительные изменения, которые претерпели понятия о времени и пространстве после открытия специальной и общей теории относительности, в свете новых результатов теории струн мы должны быть несколько более точными даже при определении расстояния. Наиболее осмысленными определениями в физике являются те, которые конструктивны, т. е. дают (по крайней мере, в принципе) способ для измерения того, что определяется. В конце концов, не важно, насколько абстрактным является понятие, — если в нашем распоряжении есть конструктивное определение, всегда можно свести смысл этого понятия к экспериментальной процедуре его измерения.

Как же дать конструктивное определение понятия расстояния? В рамках теории струн ответ на этот вопрос довольно неожиданный. В 1988 г. физики Роберт Бранденбергер и Кумрун Вафа из Гарвардского университета показали, что если пространственная форма измерения является циклической, в теории струн есть два различных, но связанных друг с другом конструктивных определения расстояния. Для каждого определения своя экспериментальная процедура измерения расстояния, и каждое определение, грубо говоря, основано на простом принципе измерения времени, за которое движущийся с постоянной фиксированной скоростью зонд проходит данный отрезок. Различие двух процедур состоит в выборе этого зонда. В первом случае используются струны, не намотанные вокруг циклического измерения, а во втором — струны, которые намотаны вокруг него. Свойство протяжённости фундаментального зонда объясняет существование двух естественных конструктивных определений расстояния в теории струн. В теории точечных частиц, где намотка не имеет места, возможно лишь одно такое определение.

Чем отличаются результаты двух процедур? Ответ, который дали Бранденбергер и Вафа, столь же поразителен, сколь и нетривиален. Основную идею можно проиллюстрировать с помощью соотношения неопределённостей. Ненамотанные струны могут свободно двигаться в пространстве, и с их помощью можно измерить полную длину окружности, пропорциональную R. Согласно соотношению неопределённостей их энергии пропорциональны 1/R (вспомним отмеченную в главе 6 обратную пропорциональность энергии зонда расстояниям, которые он способен измерять). С другой стороны, мы видели, что минимальная энергия намотанных струн пропорциональна R. Поэтому, согласно соотношению неопределённостей, если такие струны используются в качестве зондов, то эти зонды чувствительны к расстояниям порядка 1/R. Из математической реализации этой идеи следует, что если для измерения радиуса циклического измерения пространства используются оба зонда, с помощью ненамотанных струн будет измерено значение R, а с помощью намотанных — значение 1/R, где, как и выше, все результаты измерений расстояний выражены в единицах планковской длины. Есть равные основания считать результат каждого из измерений радиусом окружности: теория струн демонстрирует, что для разных зондов, которые используются для измерения расстояния, мы можем получить разные ответы. На самом деле это справедливо для всех измерений длин и расстояний, а не только для определения размера циклического измерения. Результаты, полученные с помощью ненамотанных и намотанных струнных зондов, будут обратно пропорциональны друг другу.{91}

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*