KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Александр Китайгородский - Физика для всех. Движение. Теплота

Александр Китайгородский - Физика для всех. Движение. Теплота

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Китайгородский, "Физика для всех. Движение. Теплота" бесплатно, без регистрации.
Перейти на страницу:

Сжимаемость жидкостей гораздо меньше, чем сжимаемость газов. В жидкости молекулы уже находятся в «соприкосновении». Сжатие состоит лишь в улучшении «упаковки» молекул, а при очень больших давлениях – в спрессовке самой молекулы. Насколько силы отталкивания затрудняют сжатие жидкости, видно из следующих цифр. Повышение давления от одной до двух атмосфер влечет за собой уменьшение объема газа вдвое, в то время как объем воды изменяется на 1/20 000, а ртути – всего на 1/250 000.

Даже огромное давление на глубинах океана неспособно сколько-нибудь заметно сжать воду. Действительно, давление в одну атмосферу создается столбом воды в десять метров. Давление под слоем воды в 10 км равно 1000 атмосфер. Объем воды уменьшается на 1000/20 000, т.е. на 1/20 долю.

Сжимаемость твердых тел мало отличается от сжимаемости жидкости. Это и понятно – в обоих случаях молекулы уже соприкасаются, и сжатие может быть достигнуто лишь за счет дальнейшего сближения уже сильно отталкивающихся молекул. Сверхвысокими давлениями в 50–100 тысяч атмосфер удается сжать сталь на 1/1000, свинец – на 1/7 долю объема.

Из этих примеров видно, что в земных условиях не удается сколько-нибудь значительно сжать твердое вещество.

Но во Вселенной есть тела, где вещество сжато несравненно сильнее. Астрономы открыли существование звезд, плотность вещества в которых доходит до 106 г/см3. Внутри этих звезд – их называют белыми карликами («белые» – по характеру светимости, «карлики» – из-за относительно малых размеров) – должно поэтому иметь место огромное давление.

Изменение давления с высотой

С изменением высоты давление падает. Впервые это было выяснено французом Перье по поручению Паскаля в 1648 г. Гора Пью де Дом, около которой жил Перье, была высотой 975 м. Измерения показали, что ртуть в торричеллиевой трубке падает при подъеме на гору на 8 мм. Вполне естественно падение давления воздуха с увеличением высоты. Ведь наверху на прибор уже давит меньший столб воздуха.

Если вы летали в самолете, то знаете, что на передней стенке кабины помещен прибор, показывающий с точностью до десятков метров высоту, на которую поднялся самолет. Прибор называется альтиметром. Это обычный барометр, но проградуированный на значения высот над уровнем моря.

Давление падает с возрастанием высоты; найдем формулу этой зависимости. Выделим небольшой слой воздуха площадью в 1 см2, расположенный между высотами h1 и h2. В не очень большом слое изменение плотности с высотой мало заметно. Поэтому вес выделенного объема (это цилиндрик высотой h2 − h1 и площадью 1 см2) воздуха будет mg = ρ(h2 − h1)g. Этот вес и дает падение давления при подъеме с высоты h1 на высоту h2. То есть



Но по закону Бойля – Мариотта плотность газа пропорциональна давлению. Поэтому



Слева стоит доля, на которую возросло давление при снижении с h2 до h1. Значит, одинаковым снижениям h2 − h1 будет соответствовать прирост давления на один и тот же процент.

Измерения и расчет показывают в полном согласии, что при подъеме над уровнем моря на каждый километр давление будет падать на 0,1 долю. То же самое относится и к спуску в глубокие шахты под уровень моря – при опускании на один километр давление будет возрастать на 0,1 долю своего значения.

Речь идет об изменении на 0,1 долю от значения на предыдущей высоте. Это значит, что при подъеме на один километр давление уменьшается до 0,9 от давления на уровне моря, при подъеме на следующий километр оно становится равным 0,9 от 0,9 давления на уровне моря; на высоте в 3 километра давление будет равно 0,9 от 0,9 от 0,9, т.е. (0,9)3 давления на уровне моря. Нетрудно продлить это рассуждение и далее.

Обозначая давление на уровне моря через p0, можем записать давление на высоте h (выраженной в километрах):

p = p0(0,87)h = p0·10−0,06h.

В скобках записано более точное число: 0,9 – это округленное значение. Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой и притом по довольно сложному закону. Тем не менее формула дает неплохие результаты, и на высотах до сотни километров ею можно пользоваться.

Нетрудно определить при помощи этой формулы, что на высоте Эльбруса – около 5,6 км – давление упадет примерно вдвое, а на высоте 22 км (рекордная высота подъема стратостата с людьми) давление упадет до 50 мм Hg.

Когда мы говорим про давление 760 мм Hg – нормальное, не нужно забывать добавить: «на уровне моря». На высоте 5,6 км нормальным давлением будет не 760, а 380 мм Hg.

Вместе с давлением по тому же закону падает с возрастанием высоты и плотность воздуха. На высоте 160 км воздуха останется маловато.

Действительно,

(0,87)160 = 10−10.

У земной поверхности плотность воздуха равна примерно 1000 г/м3, значит, на высоте 160 км на один, кубический метр должно приходиться по нашей формуле 10−7 г воздуха. На самом же деле, как показывают измерения, произведенные при помощи ракет, плотность воздуха на этой высоте раз в десять больше.

Еще большее занижение против истины дает наша формула для высот в несколько сот километров. В том, что формула становится непригодной на больших высотах, виновато изменение температуры с высотой, а также особое явление – распад молекул воздуха под действием солнечного излучения. Здесь мы не станем на этом останавливаться.

Вакуум

Пустой в техническом смысле сосуд содержит еще огромное число молекул.

Во многих физических приборах молекулы газа являются существенной помехой. Радиолампы, рентгеновские трубки, ускорители элементарных частиц – все эти приборы нуждаются в вакууме*9, т.е. в свободном от молекул газа пространстве. Вакуум должен быть и в обычной электрической лампочке. Если в лампочку попадет воздух, нить лампы окислится и перегорит немедленно.

В лучших вакуумных приборах имеется вакуум порядка 10−8 мм Нg. Казалось бы, совершенно ничтожное давление: на стомиллионную долю миллиметра сдвинулся бы уровень ртути в манометре при изменении давления на такую величину.

Однако при этом мизерном давлении в 1 см3 находится еще несколько сот миллионов молекул.

С этим вакуумом интересно сравнить пустоту межзвездного пространства – там на несколько кубических сантиметров приходится в среднем одна элементарная частица вещества.

Для получения вакуума применяются специальные насосы. Обычный насос, удаляющий газ путем движения поршня, может создать вакуум не более 0,01 мм Нg. Хороший, или, как говорят, высокий, вакуум можно получить при помощи так называемых диффузионных насосов – ртутных или масляных, в которых молекулы газа захватываются струей ртутного или масляного пара.

Ртутные насосы, носящие имя их изобретателя Лэнгмюра, начинают работать лишь после предварительной откачки до давлений около 0,1 мм Нg; такое предварительное разрежение называют форвакуумом.

Принцип действия заключается в следующем. Небольшой стеклянный объем сообщается с сосудом со ртутью, откачиваемым пространством и форвакуумным насосом. Ртуть подогревается, и форвакуумный насос увлекает ее пары. По дороге ртутные пары захватывают молекулы газа и доставляют их к форвакуумному насосу. Атомы ртути конденсируются в жидкость (предусмотрено охлаждение проточной водой), которая стекает в тот сосуд, откуда ртуть начала путешествие.

Достигаемый в лабораторных условиях вакуум, как мы сказали только что, – это еще далеко не пустота в абсолютном значении слова. Вакуум – это сильно разреженный газ. Свойства этого газа могут существенно отличаться от свойств обычного газа.

Движение молекул, «образующих вакуум», меняет свой характер, когда длина свободного пробега молекулы становится больше размеров сосуда, в котором находится газ. Тогда молекулы редко сталкиваются между собой и совершают свое путешествие прямыми зигзагами, ударяясь то об одну, то о другую стенку сосуда.

Вычислим, при каком давлении это будет. Выше говорилось, что в воздухе при атмосферном давлении длина пробега равна 5·10−6 см. Если увеличить ее в 107 раз, то она составит 50 см, т.е. будет заметно больше среднего по размерам сосуда. Поскольку длина пробега обратно пропорциональна плотности, а следовательно, и давлению, то давление для этого должно составлять 10−7 атмосферного или, примерно, 10−4 мм Hg.

Даже межпланетное пространство не является совсем пустым. Но плотность вещества в нем cоставляет около 5·10−24 г/см3. Основная доля межпланетного вещества – атомарный водород. В настоящее время считается, что в космосе приходится по несколько атомов водорода на 1 см3. Если увеличить молекулу водорода до размеров горошины и поместить такую «молекулу» в Москве, то ее ближайшая «космическая соседка» окажется в Туле.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*