KnigaRead.com/

А. Мигдал - ПОИСКИ ИСТИНЫ

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн А. Мигдал, "ПОИСКИ ИСТИНЫ" бесплатно, без регистрации.
Перейти на страницу:

Появление тока от переменного магнитного поля означает, что в пространстве вокруг магнитного потока возникает охватывающее его кольцевое электрическое поле.

Еще в 1820 году Ханс Эрстед обнаружил, что ток, текущий по проводнику, создает вокруг себя кольцевое магнитное поле. Что будет, если изменять периодически напряжение электрического поля, создающего ток в проводнике? Получится переменный ток и переменное магнитное поле.

Гениальная догадка Максвелла состояла в том, что магнитное поле создается не только движением зарядов, но и самим переменным элекрическим полем, аналогично тому, как электрическое поле создается переменным магнитным. Если в какой-нибудь области пустого пространства изменять электрическое поле, то вокруг этой области возникнет переменное магнитное поле.

Итак, у пустоты есть два новых замечательных свойства - переменное магнитное поле создает переменное электрическое, а переменное электрическое поле создает переменное магнитное. Но из этих двух свойств следует третье, не менее важное, - распространение в пустоте электромагнитных волн. Действительно, переменное электрическое поле, возникшее вблизи антенны радиопередатчика, образует вокруг себя меняющееся с такой же частотой магнитное поле, а оно, в свою очередь, по закону Фарадея создает уже в соседнем месте переменное электрическое поле. Так это возмущение вакуума распространяется по всем направлениям.

В конце 80-х годов XIX века, через десятилетие после создания уравнений Максвелла, Генрих Герц экспериментально обнаружил распространение электромагнитных волн. Почти все блага цивилизации основаны на этих открытиях: электростанции, радио, телевидение, метро, троллейбус, лифт, телефон, электропроигрыватели, электробритвы - все малое и большое, окружающее нас.

По Максвеллу, электромагнитные колебания должны распространяться со скоростью света. Естественно было прийти к заключению, что свет тоже электромагнитная волна. Он отличается от радиоволн только длиной волны X. Для видимого света lambda ~5000 А° = 5 x 10-5 сантиметра, то есть много меньше длины радиоволн.

Теория Максвелла была триумфом близкодействия: все электромагнитные воздействия передаются через среду - эфир. Но именно после появления теории Максвелла стала выясняться противоречивость понятия эфира. Возник вопрос: увлекается ли эфир при движении тел? Некоторые эксперименты показывали частичное или полное увлечение эфира, другие же показывали, что эфир вовсе не увлекается. Знаменитый опыт Майкель-сона, поставленный в 1887 году, с колоссальной точностью показал, что скорость света одинакова, если ее измерять вдоль и поперек движения Земли. Движение источника не влияет на скорость распространения света; если свет распространяется в эфире, то отсюда следует, что эфир полностью увлекается Землей. Однако измерение скорости света в текущей воде (опыт Физо, 1853 г.) можно было объяснить только частичным увлечением эфира движением среды.

Эфир умер - да здравствует эфир!

В начале XX века идея близкодействия получила дальнейшее развитие и обоснование в теории относительности и теории тяготения Эйнштейна. Оказалось, что не только электромагнитные, но и гравитационные воздействия распространяются в пустоте со скоростью света. Скорость света стала входить как в электродинамику, так и в механику, и в теорию тяготения.

Противоречие между опытом Физо и опытом Май-кельсона было снято новой формулой сложения скоростей, вытекавшей из теории относительности. Результаты опыта Физо объяснились без всякого предположения о свойствах эфира: скорость движения воды в этом опыте складывается со скоростью света не арифметически, а по более сложной формуле. Отпала необходимость во введении самого понятия эфира, возник новый объект - вакуум, - свободный от противоречий. Эфир умер.

В начале века казалось, что все свойства пустоты исчерпываются гравитационными и электромагнитными воздействиями. Изучение атомных ядер показало, что, кроме сил тяготения и электромагнетизма, есть еще другие силы, удерживающие нейтроны и протоны в ядре, - ядерные. Их тоже с точки зрения близкодействия надо рассматривать как напряженное состояние вакуума. Прибавилось еще одно свойство вакуума.

Но по-настоящему богатство вакуума стало выясняться после применения квантовой механики к электромагнитному полю и к другим полям, характеризующим пары частиц электрон - позитрон, протон - антипротон и так далее. После создания ускорителей заряженных частиц выяснилось, что из пустоты при столкновениях нуклонов может возникнуть целый сноп различных частиц. Вакуум кишит частицами, нужно только их оттуда извлечь! Стало ясно, что вакуум представляет собой удивительно сложную и интересную среду. Его можно было снова назвать эфиром, если бы не боязнь путаницы с наивным противоречивым понятием эфира XIX века.

Квантовая механика вакуумных полей

В конце 20-х годов XX века произошли два события: Поль Дирак построил свое знаменитое уравнение и после этого применил законы квантовой механики к электромагнитному полю.

Уравнение Дирака было обобщением квантовой механики на частицы со скоростями, сравнимыми со скоростью света. Из этого уравнения автоматически получался правильный магнитный момент электрона, вытекали поправки к законам движения электронов в тяжелых атомах. Но самым важным было доказательство существования двойника электрона - античастицы - позитрона, отличающегося от электрона только знаком заряда. В 1932 году это предсказание подтвердилось, позитрон был обнаружен Карлом Андерсоном, и за это он получил Нобелевскую премию.

Уравнение Дирака предсказывает существование античастиц не только для электрона, но и для любой частицы со спином 1/2. Существуют антинейтрон и антипротон. Античастицы существуют и для частиц с целым спином. Например, для частиц со спином нуль, которые описываются уравнением Клейна - Гордона - Фока. Как это связано со свойствами вакуума? Мы говорили об этом в конце предыдущей главы. Перечислим кратко полученные там результаты.

Применение квантовой механики к электромагнитному полю привело к удивительным следствиям. Электромагнитное поле в ящике с отражающими стенками изображается как набор электромагнитных колебаний с различными длинами волн. Устойчивы только такие колебания, для которых на длине ящика укладывается целое число полуволн. Каждое колебание можно рассматривать как осциллятор, в котором роль кинетической энергии играет энергия магнитного поля, а потенциальной - электрическая энергия. Вспомним результаты квантования обычного осциллятора. В основном состоянии, когда энергия его минимальна, кинетическая и потенциальная энергии по отдельности не равны нулю (как было бы у классического осциллятора). Координата и скорость осциллятора не имеют определенных значений. Его волновая функция позволяет найти вероятность того или иного значения координаты или скорости. Аналогично для каждого из осцилляторов электромагнитного поля можно указать вероятность того или иного значения электрического или магнитного поля. Электрическое и магнитное поля совершают «нулевые колебания». Средний квадрат электрического поля и средний квадрат магнитного поля имеют неравные нулю значения, даже если в пространстве нет ни одной заряженной частицы и ни одного кванта электромагнитного поля. Существование нулевых колебаний подтверждено многими экспериментами. Так, эти колебания заставляют дрожать электрон, двигающийся в атоме. В результате электрон как бы превращается в шарик с радиусом, равным амплитуде дрожания; поэтому он слабее взаимодействует с ядром, чем точечный электрон. Энергии спектральных линий, испускаемых электроном, смещаются. Теоретическое значение смещения с огромной точностью совпало с экспериментальным.

Поля, описывающие частицы со спином 1/2 (их называют «ферми-поля»), квантуются иначе, но результат очень похож. В вакууме происходят нулевые колебания и таких полей; в нем исчезают и появляются пары электрон - позитрон, нуклон - антинуклон и вообще пары всех частиц с произвольным спином. Вакуум наполнен такими неродившимися, образующимися и исчезающими частицами, они называются «виртуальными».

Достаточно возбудить вакуум, скажем, сталкивая два нуклона или электрон с позитроном, как виртуальные частицы могут превратиться в реальные - при столкновении рождаются новые частицы.

Ливни частиц

При достаточно большой энергии из вакуума рождаются снопы различных частиц и античастиц. Проследим это явление более подробно.

Допустим, протоны падают на вещество и отклоняются от своего пути нуклонами ядер. На опыте измеряется число частиц, отклоненных под тем или иным углом. Для того чтобы сосчитать количество отклоненных частиц, достаточно знать, какую площадь затеняет каждый отдельный нуклон. Эта площадь называется «поперечным сечением». Зная число нуклонов в единице объема вещества и их поперечное сечение, нетрудно сосчитать и полную затененную площадь, а значит, и число рассеянных частиц. И наоборот, из такого опыта можно узнать, как рассеивается протон на отдельном нуклоне. Поперечное сечение для рассеяния нуклона на нуклоне определяется радиусом той области, в которой эти частицы заметно взаимодействуют. (Вспомним, что ядерные силы очень быстро убывают с расстоянием.) Квантовая механика иногда вносит серьезные изменения в эту наглядную картину. Медленные частицы имеют большую длину волны, ведь длина волны обратно пропорциональна количеству движения частицы. Мы уже говорили об этом в главе «Как работают физики». По этой причине сечение поглощения очень медленных нейтронов оказывается в сотни и тысячи раз большим, чем геометрические размеры поглощающего их ядра. Однако сейчас это не должно нас беспокоить, мы будем рассматривать частицы с огромной энергией. Их длина волны гораздо меньше размеров эффективного взаимодействия.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*