KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики

Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Роджер Пенроуз, "Новый ум короля: О компьютерах, мышлении и законах физики" бесплатно, без регистрации.
Перейти на страницу:

Данная проблема не имеет для математики особого значения и приведена лишь как наглядный пример. Брауэр, с позиций радикального интуиционизма, сказал бы, что в настоящее время утверждение «где-то в дробной части числа π существует двадцать последовательных семерок» не является ни справедливым, ни ложным. Если когда-либо в дальнейшем будет установлен конкретный результат — посредством вычислений или путем (интуиционистского) математического доказательства — то тогда утверждение станет «истинным» или «ложным», соответственно. Сходный пример представляет собой и «последняя теорема Ферма». Вновь, согласно крайнему интуиционизму Брауэра, это утверждение не может быть сегодня признано ни ложным, ни истинным, но возможно, что его значение будет определено в будущем. По-моему, такая субъективность и «конъюнктурность» понятия математической истины просто неприемлема. Действительно, вопрос, будет ли — а если будет, то когда — официально признана «доказанность» некоторого математического результата, является весьма субъективным. Математическая истина не должна подчиняться такому «общественно-зависимому» критерию. Помимо этого, опираться на понятие математической истины, зависящее от времени — это, мягко говоря, наиболее неудобный и неудовлетворительный подход для математики, которую предполагается использовать для достоверного описания физического мира. Не все интуиционисты придерживаются таких радикальных взглядов, как Брауэр. И все же точка зрения интуиционистов является, бесспорно, крайне неудобной, даже когда она родственна идеям конструктивизма. Немногие современные математики строго исповедуют чистый интуиционизм, даже если бы единственной причиной этого была бы его ограниченность относительно типов математических рассуждений, которые он позволяет использовать.

Я коротко описал три основных направления в современной математической философии: формализм, платонизм и интуиционизм. Я не скрываю, что практически целиком отдаю предпочтение платонистской точке зрения, согласно которой математическая истина абсолютна и вечна, является внешней по отношению к любой теории и не базируется ни на каком «рукотворном» критерии; а математические объекты обладают свойством собственного вечного существования, не зависящего ни от человеческого общества, ни от конкретного физического объекта. Я попытался привести аргументы в пользу этой точки зрения в этом и предыдущем разделах, а также в конце третьей главы. Я надеюсь, что читатель готов следовать за мной и далее в этих рассуждениях, которые будут очень важны для понимания многих положений в дальнейшем.

Теоремы геделевского типа как следствие результатов, полученных Тьюрингом

В моем изложении теоремы Геделя я опустил многие детали и к тому же оставил в стороне то, что относилось к неразрешимость вопроса о непротиворечивости системы аксиом и было исторически наиболее важной частью его доказательства. Моя задача состояла не в том, чтобы акцентировать внимание на «проблеме доказуемости непротиворечивости аксиом», столь важной для Гильберта и его современников; я стремился показать, что специфическое утверждение Геделя — которое нельзя ни подтвердить, ни опровергнуть исходя из аксиом и правил вывода рассматриваемой формальной системы — оказывается с очевидностью верным, если опираться в наших рассуждениях на интуитивное понимание смысла применяемых процедур.

Я уже упоминал, что Тьюринг разработал свое доказательство неразрешимости проблемы остановки после изучения работ Геделя. Оба доказательства имеют много общего и, естественно, основные положения из результатов Геделя могут быть непосредственно получены путем использования процедуры Тьюринга. Давайте посмотрим, как это происходит, и как при этом можно несколько иным образом взглянуть на то, что осталось за кулисами теоремы Геделя.

Непременное свойство формальной математической системы заключается в существовании вычислимого способа решить, является ли некоторая строка символов доказательством соответствующего математического утверждения или нет. Весь смысл формализации понятия математического доказательства в конечном счете сводится к тому, чтобы не требовалось никакого дополнительного суждения о состоятельности того или иного типа рассуждений. Необходимо обеспечить возможность проверять полностью механическим и заранее определенным способом, что предполагаемое доказательство и в самом деле является таковым — то есть должен существовать алгоритм для проверки доказательств. С другой стороны, мы не требуем существования алгоритмической процедуры нахождения доказательств истинности (или ложности) предлагаемых математических утверждений.

Как оказывается, алгоритм отыскания доказательства внутри произвольной формальной системы присутствует всегда, если только система допускает какое-нибудь доказательство. Действительно, мы прежде всего должны предполагать, что наша система формулируется на некотором языке символов, который можно выразить в терминах некоторого конечного «алфавита» символов. Как и ранее, давайте упорядочим наши строки символов лексикографически, что, как мы помним, означает расставление в алфавитном порядке строк каждой определенной длины, где все строчки единичной длины идут первыми, за ними следуют (также упорядоченные) строки из двух символов, потом — из трех, и так далее (см. прим. 72 подглавы «Теорема Геделя»).

Тогда мы будем иметь корректно построенные и пронумерованные в соответствии с лексикографической схемой доказательства. Располагая нашим списком доказательств, мы одновременно имеем и перечень всех теорем нашей формальной системы, поскольку теорема — это утверждение, которое стоит в последней строчке списка корректно построенных доказательств. Подобный перечень полностью проверяется непосредственными вычислениями: ведь мы можем рассматривать все строки символов системы — независимо от того, имеют они смысл как доказательства или нет — и начать тестировать нашим алгоритмом первую строчку, чтобы понять, является ли она доказательством, и отбросить ее, если нет; затем мы подобным же образом тестируем вторую строчку и исключаем ее, если и она не является доказательством; потом следует третья строчка, четвертая и так далее. Посредством этого мы в конце концов достигнем строки, содержащей доказательство, если таковая имеется в нашем списке.

Таким образом, если бы Гильберту удалось отыскать свою математическую систему — систему аксиом и правил вывода, достаточно мощную, чтобы позволить решать, путем формального доказательства, вопрос о справедливости или ложности любого математического утверждения, корректно сформулированного в рамках системы, — то тогда существовал бы общий алгоритмический метод выяснения истинности любого такого рассуждения. Почему это так? Потому что, если мы при помощи процедуры, описанной выше, находим искомое утверждение как последнюю строчку некоторого доказательства, то это утверждение автоматически считается доказанным. Если же, напротив, мы находим последнюю строчку, содержащую отрицание нашего утверждения, то мы тем самым доказываем его ложность. Если бы схема Гильберта была полной, то либо одна, либо другая возможность обязательно имела бы место (и если бы система была непротиворечивой, то обе возможности никогда бы не могли быть реализованы одновременно). То есть наша механическая процедура всегда бы прерывалась на некотором шаге и мы бы имели универсальный алгоритм для доказательства истинности или ложности всех утверждений системы. Это находилось бы в противоречии с результатами Тьюринга, изложенными во второй главе, согласно которым не существует общего алгоритма для доказательства математических утверждений. И, как следствие, мы доказали теорему Геделя о том, что ни одна система наподобие задуманной Гильбертом не может быть полной в обсуждаемом нами смысле.

В действительности теорема Геделя носит более частный характер, поскольку от формальной системы того типа, который рассматривал Гедель, требовалась адекватность по отношению к арифметическим утверждениям, а не математическим утверждениям вообще. Можем ли мы устроить так, чтобы все необходимые операции машины Тьюринга выполнялись только при помощи арифметики? Или, иными словами, могут ли все вычислимые функции натуральных чисел (т. е. рекурсивные, или алгоритмические функции — результаты действия машины Тьюринга) быть выражены в терминах обычной арифметики? На самом деле это так, хотя и не совсем. Нам понадобится одна дополнительная операция, которую мы добавим в систему стандартных правил арифметики и логики (включая кванторы Eк.с. и Aк.о.). Эта операция просто выбирает «наименьшее натуральное число такое, что K(х) имеет значение „истина“», где К() — заданная арифметически вычислимая функция исчисления высказываний, для которой предполагается существование такого числа, т. е. что

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*